結果
問題 | No.922 東北きりきざむたん |
ユーザー | Pachicobue |
提出日時 | 2019-11-09 03:41:36 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 330 ms / 2,000 ms |
コード長 | 16,221 bytes |
コンパイル時間 | 2,921 ms |
コンパイル使用メモリ | 232,148 KB |
実行使用メモリ | 48,092 KB |
最終ジャッジ日時 | 2024-09-15 03:55:23 |
合計ジャッジ時間 | 8,451 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge6 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 3 ms
5,376 KB |
testcase_07 | AC | 3 ms
5,376 KB |
testcase_08 | AC | 3 ms
5,376 KB |
testcase_09 | AC | 84 ms
20,336 KB |
testcase_10 | AC | 60 ms
10,084 KB |
testcase_11 | AC | 99 ms
17,760 KB |
testcase_12 | AC | 27 ms
15,104 KB |
testcase_13 | AC | 21 ms
6,948 KB |
testcase_14 | AC | 129 ms
27,968 KB |
testcase_15 | AC | 13 ms
14,976 KB |
testcase_16 | AC | 272 ms
40,492 KB |
testcase_17 | AC | 279 ms
40,500 KB |
testcase_18 | AC | 268 ms
40,504 KB |
testcase_19 | AC | 272 ms
40,380 KB |
testcase_20 | AC | 279 ms
40,388 KB |
testcase_21 | AC | 321 ms
40,476 KB |
testcase_22 | AC | 330 ms
40,492 KB |
testcase_23 | AC | 330 ms
43,720 KB |
testcase_24 | AC | 317 ms
43,584 KB |
testcase_25 | AC | 263 ms
45,204 KB |
testcase_26 | AC | 258 ms
45,232 KB |
testcase_27 | AC | 290 ms
45,180 KB |
testcase_28 | AC | 81 ms
18,892 KB |
testcase_29 | AC | 268 ms
48,092 KB |
ソースコード
#include <bits/stdc++.h> #pragma GCC diagnostic ignored "-Wsign-compare" #pragma GCC diagnostic ignored "-Wsign-conversion" using i32 = int32_t; using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; using uint = unsigned int; using usize = std::size_t; using ll = long long; using ull = unsigned long long; using ld = long double; template<typename T> constexpr T popcount(const T u) { return u ? static_cast<T>(__builtin_popcountll(static_cast<u64>(u))) : static_cast<T>(0); } template<typename T> constexpr T log2p1(const T u) { return u ? static_cast<T>(64 - __builtin_clzll(static_cast<u64>(u))) : static_cast<T>(0); } template<typename T> constexpr T msbp1(const T u) { return log2p1(u); } template<typename T> constexpr T lsbp1(const T u) { return __builtin_ffsll(u); } template<typename T> constexpr T clog(const T u) { return u ? log2p1(u - 1) : static_cast<T>(u); } template<typename T> constexpr bool ispow2(const T u) { return u and (static_cast<u64>(u) & static_cast<u64>(u - 1)) == 0; } template<typename T> constexpr T ceil2(const T u) { return static_cast<T>(1) << clog(u); } template<typename T> constexpr T floor2(const T u) { return u == 0 ? static_cast<T>(0) : static_cast<T>(1) << (log2p1(u) - 1); } template<typename T> constexpr bool btest(const T mask, const usize ind) { return static_cast<bool>((static_cast<u64>(mask) >> ind) & static_cast<u64>(1)); } template<typename T> void bset(T& mask, const usize ind) { mask |= (static_cast<T>(1) << ind); } template<typename T> void breset(T& mask, const usize ind) { mask &= ~(static_cast<T>(1) << ind); } template<typename T> void bflip(T& mask, const usize ind) { mask ^= (static_cast<T>(1) << ind); } template<typename T> void bset(T& mask, const usize ind, const bool b) { (b ? bset(mask, ind) : breset(mask, ind)); } template<typename T> constexpr T bcut(const T mask, const usize ind) { return ind == 0 ? static_cast<T>(0) : static_cast<T>((static_cast<u64>(mask) << (64 - ind)) >> (64 - ind)); } template<typename T> bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); } template<typename T> bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); } constexpr unsigned int mod = 1000000007; template<typename T> constexpr T inf_v = std::numeric_limits<T>::max() / 4; template<typename Real> constexpr Real pi_v = Real{3.141592653589793238462643383279502884}; template<typename T> T read() { T v; return std::cin >> v, v; } template<typename T, typename... Args> auto read(const usize size, Args... args) { std::vector<decltype(read<T>(args...))> ans(size); for (usize i = 0; i < size; i++) { ans[i] = read<T>(args...); } return ans; } template<typename... Types> auto reads() { return std::tuple<std::decay_t<Types>...>{read<Types>()...}; } # define SHOW(...) static_cast<void>(0) template<typename T> T make_v(const T v) { return v; } template<typename... Args> auto make_v(const std::size_t size, Args... args) { return std::vector<decltype(make_v(args...))>(size, make_v(args...)); } template<typename SemiGroup> class sparse_table { public: using semigroup_type = SemiGroup; using value_type = typename semigroup_type::value_type; template<typename InIt> sparse_table(const InIt first, const InIt last) : lg{clog(static_cast<usize>(std::distance(first, last) + 1))}, table(lg, std::vector<value_type>(1 << lg)) { const usize cap = 1 << lg; for (usize d = 0, base = 1; d < lg; d++, base <<= 1) { std::copy(first, last, table[d].begin()); for (usize b = 0; b < cap / base; b++) { if (b % 2 == 1) { for (usize i = 1; i < base; i++) { table[d][b * base + i] = semigroup_type::merge(table[d][b * base + i - 1], table[d][b * base + i]); } } else { for (usize i = 1; i < base; i++) { table[d][(b + 1) * base - i - 1] = semigroup_type::merge(table[d][(b + 1) * base - i - 1], table[d][(b + 1) * base - i]); } } } } } value_type fold(const usize l, const usize r) const { assert(l < r); if (r - l == 1) { return table[0][l]; } const usize d = log2p1(r ^ l) - 1; return semigroup_type::merge(table[d][l], table[d][r - 1]); } private: const usize lg; std::vector<std::vector<value_type>> table; }; template<typename Value, typename Comp = std::less<Value>, typename Bucket = uint64_t> class linear_rmq { public: using value_type = Value; using comparator_type = Comp; template<typename InIt> linear_rmq(const InIt first, const InIt last) : sz{static_cast<usize>(std::distance(first, last))}, bn{wind(sz + bs - 1)}, val{first, last}, bucket_val([&]() { std::vector<value_type> ans(bn); for (usize i = 0; i < sz; i++) { ans[wind(i)] = i % bs == 0 ? val[i] : std::min(ans[wind(i)], val[i], comparator_type{}); } return ans; }()), masks(sz, 0), st(bucket_val.begin(), bucket_val.end()) { for (usize i = 0; i < bn; i++) { std::vector<usize> g(bs, sz); std::stack<usize> stack; for (usize j = 0; j < bs and ind(i, j) < sz; j++) { for (; not stack.empty() and not comparator_type{}(val[stack.top()], val[ind(i, j)]); stack.pop()) {} g[j] = stack.empty() ? sz : stack.top(), stack.push(ind(i, j)); } for (usize j = 0; j < bs and ind(i, j) < sz; j++) { masks[ind(i, j)] = g[j] == sz ? static_cast<bucket_type>(0) : (masks[g[j]] | static_cast<bucket_type>(1) << (g[j] - i * bs)); } } } value_type fold(const usize l, const usize r) const { assert(l < r), assert(r <= sz); const usize lb = (l + bs - 1) / bs, rb = r / bs; if (lb > rb) { return brmq(l, r); } else { return lb < rb ? (l < bs * lb ? (bs * rb < r ? std::min({st.fold(lb, rb), brmq(l, bs * lb), brmq(bs * rb, r)}, comparator_type{}) : std::min(st.fold(lb, rb), brmq(l, bs * lb), comparator_type{})) : (bs * rb < r ? std::min(st.fold(lb, rb), brmq(bs * rb, r), comparator_type{}) : st.fold(lb, rb))) : (l < bs * lb ? (bs * rb < r ? std::min(brmq(l, bs * lb), brmq(bs * rb, r), comparator_type{}) : brmq(l, bs * lb)) : (bs * rb < r ? brmq(bs * rb, r) : value_type{})); } } private: using bucket_type = Bucket; static constexpr usize bs = sizeof(bucket_type) * 8; static constexpr usize bslog = log2p1(bs) - 1; static constexpr usize wind(const usize n) { return n >> (bslog); } static constexpr usize bind(const usize n) { return bcut(n, bslog); } static constexpr usize ind(const usize w, const usize b) { return (w << bslog) | b; } value_type brmq(const usize l, usize r) const { r--; const Bucket w = masks[r] >> (l % bs); return w == 0 ? val[r] : val[l + lsbp1(w) - 1]; } struct min { using value_type = Value; static value_type merge(const value_type& a, const value_type& b) { return std::min(a, b, comparator_type{}); } }; const usize sz, bn; std::vector<value_type> val, bucket_val; std::vector<Bucket> masks; sparse_table<min> st; }; template<typename Cost> class base_graph { public: using cost_type = Cost; base_graph(const usize sz) : sz{sz}, edges(sz), rev_edges(sz) {} void add_edge(const usize from, const usize to, const Cost cost, const bool bi = false) { assert(from < sz), assert(to < sz); edges[from].push_back(edge{from, to, cost}), rev_edges[to].push_back(edge(to, from, cost)); if (bi) { add_edge(to, from, cost, false); } } struct edge { edge(const usize from, const usize to, const Cost cost) : from{from}, to{to}, cost{cost} {} usize from, to; Cost cost; bool operator<(const edge& e) const { return cost != e.cost ? cost < e.cost : to < e.to; } }; std::vector<edge>& operator[](const usize i) { return assert(i < sz), edges[i]; } const std::vector<edge>& operator[](const usize i) const { return assert(i < sz), edges[i]; } const std::vector<std::vector<edge>>& rev_edge() const { return rev_edges; } std::vector<std::vector<edge>>& rev_edge() { return rev_edges; } friend std::ostream& operator<<(std::ostream& os, const base_graph& g) { os << "[\n"; for (usize i = 0; i < g.sz; i++) { for (const auto& e : g.edges[i]) { os << i << "->" << e.to << ":" << e.cost << "\n"; } } return (os << "]\n"); } static usize to(const edge& e) { return e.to; } usize size() const { return sz; } private: const usize sz; std::vector<std::vector<edge>> edges, rev_edges; }; template<> class base_graph<void> { public: base_graph(const usize sz) : sz{sz}, edges(sz), rev_edges(sz) {} void add_edge(const usize from, const usize to, const bool bi = false) { assert(from < sz), assert(to < sz); edges[from].push_back(to), rev_edges[to].push_back(from); if (bi) { add_edge(to, from, false); } } std::vector<usize>& operator[](const usize i) { return assert(i < sz), edges[i]; } const std::vector<usize>& operator[](const usize i) const { return assert(i < sz), edges[i]; } const std::vector<std::vector<usize>>& rev_edge() const { return rev_edges; } std::vector<std::vector<usize>>& rev_edge() { return rev_edges; } friend std::ostream& operator<<(std::ostream& os, const base_graph& g) { os << "[\n"; for (usize i = 0; i < g.sz; i++) { for (const usize to : g.edges[i]) { os << i << "->" << to << "\n"; } } return (os << "]\n"); } static usize to(const usize e) { return e; } usize size() const { return sz; } private: const usize sz; std::vector<std::vector<usize>> edges, rev_edges; }; using graph = base_graph<void>; using tree = graph; template<typename Cost> using cost_graph = base_graph<Cost>; template<typename Cost> using cost_tree = cost_graph<Cost>; template<typename Cost> class lca { public: lca(const cost_tree<Cost>& tree, const std::size_t root = 0) : left(tree.size(), 0), depth([&]() { std::vector<std::pair<std::size_t, std::size_t>> ans; std::vector<bool> used(tree.size(), false); auto dfs = [&](auto&& self, const std::pair<std::size_t, std::size_t>& s) -> void { const std::size_t pos = s.second; used[pos] = true, left[pos] = ans.size(), ans.push_back(s); for (const auto& e : tree[pos]) { const std::size_t to = base_graph<Cost>::to(e); if (used[to]) { continue; } self(self, {s.first + 1, to}), ans.push_back(s); } }; dfs(dfs, {0, root}); return ans; }()), stable(depth.begin(), depth.end()) {} std::size_t operator()(const std::size_t u, const std::size_t v) const { const std::size_t ul = left[u], vl = left[v]; return stable.fold(std::min(ul, vl), std::max(ul, vl) + 1).second; } private: std::vector<std::size_t> left; std::vector<std::pair<std::size_t, std::size_t>> depth; linear_rmq<std::pair<std::size_t, std::size_t>> stable; }; class unionfind { public: unionfind(const usize sz) : sz{sz}, rt(sz), comp_sz(sz, 1) { std::iota(rt.begin(), rt.end(), 0); } usize root_of(const usize a) { return assert(a < sz), rt[a] == a ? a : rt[a] = root_of(rt[a]); } bool unite(usize a, usize b) { assert(a < sz), assert(b < sz), a = root_of(a), b = root_of(b); if (a == b) { return false; } if (comp_sz[a] < comp_sz[b]) { std::swap(a, b); } return comp_sz[a] += comp_sz[b], rt[b] = a, true; } usize size_of(const usize a) { return assert(a < sz), comp_sz[root_of(a)]; } friend std::ostream& operator<<(std::ostream& os, const unionfind& uf) { os << "["; for (usize i = 0; i < uf.sz; i++) { os << uf.rt[i] << (i + 1 == uf.sz ? "" : ","); } return (os << "]\n"); } private: const usize sz; std::vector<usize> rt, comp_sz; }; int main() { auto [n, m, q] = reads<usize, usize, usize>(); graph g(n); unionfind uf(n); for (usize i = 0; i < m; i++) { const auto u = read<usize>() - 1, v = read<usize>() - 1; uf.unite(u, v), g.add_edge(u, v, true); } using pii = std::pair<usize, usize>; std::vector<pii> qs; std::vector<usize> num(n, 0); for (usize i = 0; i < q; i++) { const auto u = read<usize>() - 1, v = read<usize>() - 1; qs.push_back({u, v}); if (uf.root_of(u) != uf.root_of(v)) { num[u]++, num[v]++; } } std::vector<bool> used(n, false); std::vector<usize> sub(n, 0); std::vector<bool> isr(n, false); for (usize i = 0; i < n; i++) { if (used[i]) { continue; } auto dfs1 = [&](auto&& self, const usize s) -> ll { used[s] = true, sub[s] = num[s]; ll dsum = 0; for (const usize to : g[s]) { if (used[to]) { continue; } dsum += self(self, to), dsum += sub[to], sub[s] += sub[to]; } return dsum; }; const ll td = dfs1(dfs1, i); const usize ts = sub[i]; pii min = {inf_v<usize>, n}; auto dfs2 = [&](auto&& self, const usize s, const usize p, const ll ds) -> void { chmin(min, {ds, s}); for (const usize to : g[s]) { if (to == p) { continue; } const ll nds = ds - sub[to] + (ts - sub[to]); self(self, to, s, nds); } }; dfs2(dfs2, i, n, td); isr[min.second] = true; } SHOW(isr); graph h(n + 1); for (usize i = 0; i < n; i++) { for (const usize to : g[i]) { if (i > to) { continue; } if (isr[i]) { h.add_edge(n, to, true); } else if (isr[to]) { h.add_edge(i, n, true); } else { h.add_edge(i, to, true); } } } lca lca_manager(h, n); std::vector<usize> depth(n + 1, 0); auto dfs = [&](auto&& self, const usize s, const usize p) -> void { for (const usize to : h[s]) { if (to == p) { continue; } depth[to] = depth[s] + 1, self(self, to, s); } }; dfs(dfs, n, n + 1); ll ans = 0; for (const auto& q : qs) { const auto [u, v] = q; const usize l = lca_manager(u, v); ans += depth[u] + depth[v] - 2LL * depth[l]; } std::cout << ans << std::endl; return 0; }