結果

問題 No.235 めぐるはめぐる (5)
ユーザー akakimidoriakakimidori
提出日時 2019-11-12 02:26:46
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 1,376 ms / 10,000 ms
コード長 10,748 bytes
コンパイル時間 16,069 ms
コンパイル使用メモリ 405,364 KB
実行使用メモリ 43,800 KB
最終ジャッジ日時 2024-09-16 04:28:14
合計ジャッジ時間 19,831 ms
ジャッジサーバーID
(参考情報)
judge2 / judge6
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1,376 ms
42,532 KB
testcase_01 AC 938 ms
43,800 KB
testcase_02 AC 1,306 ms
42,568 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// ---------- begin ModInt ----------
const MOD: u32 = 1_000_000_007;

#[derive(Clone, Copy)]
struct ModInt(u32);

impl std::ops::Add for ModInt {
    type Output = ModInt;
    fn add(self, rhs: ModInt) -> Self::Output {
        let mut d = self.0 + rhs.0;
        if d >= MOD {
            d -= MOD;
        }
        ModInt(d)
    }
}

impl std::ops::AddAssign for ModInt {
    fn add_assign(&mut self, rhs: ModInt) {
        *self = *self + rhs;
    }
}

impl std::ops::Sub for ModInt {
    type Output = ModInt;
    fn sub(self, rhs: ModInt) -> Self::Output {
        let mut d = self.0 + MOD - rhs.0;
        if d >= MOD {
            d -= MOD;
        }
        ModInt(d)
    }
}

impl std::ops::SubAssign for ModInt {
    fn sub_assign(&mut self, rhs: ModInt) {
        *self = *self - rhs;
    }
}

impl std::ops::Mul for ModInt {
    type Output = ModInt;
    fn mul(self, rhs: ModInt) -> Self::Output {
        ModInt((self.0 as u64 * rhs.0 as u64 % MOD as u64) as u32)
    }
}

impl std::ops::MulAssign for ModInt {
    fn mul_assign(&mut self, rhs: ModInt) {
        *self = *self * rhs;
    }
}

impl std::ops::Neg for ModInt {
    type Output = ModInt;
    fn neg(self) -> Self::Output {
        ModInt(if self.0 == 0 {0} else {MOD - self.0})
    }
}

/* 
impl std::fmt::Display for ModInt {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}
*/

#[allow(dead_code)]
impl ModInt {
    pub fn new(n: u32) -> ModInt {
        ModInt(n % MOD)
    }
    pub fn zero() -> ModInt {
        ModInt(0)
    }
    pub fn one() -> ModInt {
        ModInt(1)
    }
    pub fn pow(self, mut n: u32) -> ModInt {
        let mut t = ModInt::one();
        let mut s = self;
        while n > 0 {
            if n & 1 == 1 {
                t *= s;
            }
            s *= s;
            n >>= 1;
        }
        t
    }
    pub fn inv(self) -> ModInt {
        self.pow(MOD - 2)
    }
}
// ---------- end ModInt ----------
// ---------- begin Heavy-Light decomposition ----------
struct HLD {
    graph: Vec<Vec<usize>>,
    path_root: Vec<usize>,
    path_parent: Vec<usize>,
    left: Vec<usize>,
    right: Vec<usize>,
}

#[allow(dead_code)]
impl HLD {
    fn new(n: usize) -> Self {
        HLD {
            graph: vec![vec![]; n],
            path_root: vec![],
            path_parent: vec![],
            left: vec![],
            right: vec![],
        }
    }
    fn add_edge(&mut self, a: usize, b: usize) {
        self.graph[a].push(b);
        self.graph[b].push(a);
    }
    fn build(&mut self, root: usize) {
        let mut q = vec![];
        let mut stack = vec![(root, root)];
        let graph = &mut self.graph;
        while let Some((v, p)) = stack.pop() {
            q.push(v);
            for i in 0..graph[v].len() {
                if graph[v][i] == p {
                    graph[v].swap_remove(i);
                    break;
                }
            }
            for &u in &graph[v] {
                stack.push((u, v));
            }
        }
        let n = graph.len();
        let mut size = vec![1; n];
        for &v in q.iter().rev() {
            for i in 0..graph[v].len() {
                let u = graph[v][i];
                size[v] += size[u];
                if size[u] > size[graph[v][0]] {
                    graph[v].swap(0, i);
                }
            }
        }
        let mut path_root = vec![root; n];
        let mut path_parent = vec![root; n];
        let mut left = vec![0; n];
        let mut right = vec![0; n];
        let mut stack = vec![(root, 0)];
        let mut k = 0;
        while let Some((v, op)) = stack.pop() {
            if op == 1 {
                right[v] = k;
                continue;
            }
            left[v] = k;
            k += 1;
            stack.push((v, 1));
            for i in 1..graph[v].len() {
                let u = graph[v][i];
                path_root[u] = u;
                path_parent[u] = v;
                stack.push((u, 0));
            }
            if graph[v].len() > 0 {
                let u = graph[v][0];
                path_root[u] = path_root[v];
                path_parent[u] = path_parent[v];
                stack.push((u, 0));
            }
        }
        self.path_root = path_root;
        self.path_parent = path_parent;
        self.left = left;
        self.right = right;
    }
    fn sub_tree(&self, v: usize) -> (usize, usize) {
        (self.left[v], self.right[v])
    }
    fn path(&self, v: usize, u: usize) -> Vec<(usize, usize)> {
        let path = &self.path_root;
        let parent = &self.path_parent;
        let index = &self.left;
        let mut x = v;
        let mut y = u;
        let mut ans = vec![];
        while path[x] != path[y] {
            if index[x] < index[y] {
                let p = path[y];
                ans.push((index[p], index[y] + 1));
                y = parent[y];
            } else {
                let p = path[x];
                ans.push((index[p], index[x] + 1));
                x = parent[x];
            }
        }
        ans.push((std::cmp::min(index[x], index[y]), std::cmp::max(index[x], index[y]) + 1));
        ans
    }
}
// ---------- end Heavy-Light decomposition ----------
// ---------- begin Lazy Segment Tree ----------
pub trait TE {
    type T: Clone;
    type E: Clone;
    fn fold(l: Self::T, r: Self::T) -> Self::T;
    fn eval(x: Self::T, f: Self::E) -> Self::T;
    fn merge(g: Self::E, h: Self::E) -> Self::E;
    fn e() -> Self::T;
    fn id() -> Self::E;
}

pub struct LazySegmentTree<R: TE> {
    size: usize,
    bit: usize,
    a: Vec<(R::T, R::E)>,
}

impl <R: TE> LazySegmentTree<R> {
    pub fn new(n: usize) -> LazySegmentTree<R> {
        let mut bit = 0;
        while (1 << bit) < n {
            bit += 1;
        }
        LazySegmentTree {
            size: 1 << bit,
            bit: bit,
            a: vec![(R::e(), R::id()); 2 << bit],
        }
    }
    pub fn build_by(z: &[R::T]) -> LazySegmentTree<R> {
        let n = z.len();
        let mut bit = 0;
        while (1 << bit) < n {
            bit += 1;
        }
        let mut a = vec![(R::e(), R::id()); 2 << bit];
        for (a, z) in a[(1 << bit)..].iter_mut().zip(z.iter()) {
            a.0 = z.clone();
        }
        for i in (1..(1 << bit)).rev() {
            let l = R::eval(a[2 * i].0.clone(), a[2 * i].1.clone());
            let r = R::eval(a[2 * i + 1].0.clone(), a[2 * i + 1].1.clone());
            a[i].0 = R::fold(l, r);
        }
        LazySegmentTree {
            size: 1 << bit,
            bit : bit,
            a: a,
        }
    }
    fn eval(&self, k: usize) -> R::T {
        R::eval(self.a[k].0.clone(), self.a[k].1.clone())
    }
    fn propagate(&mut self, x: usize) {
        let x = x + self.size;
        for i in (1..(self.bit + 1)).rev() {
            let k = x >> i;
            self.a[2 * k].1 = R::merge(self.a[2 * k].1.clone(), self.a[k].1.clone());
            self.a[2 * k + 1].1 = R::merge(self.a[2 * k + 1].1.clone(), self.a[k].1.clone());
            self.a[k].1 = R::id();
            self.a[k].0 = R::fold(self.eval(2 * k), self.eval(2 * k + 1));
        }
    }
    fn save(&mut self, x: usize) {
        let x = x + self.size;
        for i in 1..(self.bit + 1) {
            let k = x >> i;
            self.a[k].0 = R::fold(self.eval(2 * k), self.eval(2 * k + 1));
        }
    }
    pub fn update(&mut self, l: usize, r: usize, op: R::E) {
        self.propagate(l);
        self.propagate(r - 1);
        let mut x = l + self.size;
        let mut y = r + self.size;
        while x < y {
            if x & 1 == 1 {
                self.a[x].1 = R::merge(self.a[x].1.clone(), op.clone());
                x += 1;
            }
            if y & 1 == 1 {
                y -= 1;
                self.a[y].1 = R::merge(self.a[y].1.clone(), op.clone());
            }
            x >>= 1;
            y >>= 1;
        }
        self.save(l);
        self.save(r - 1);
    }
    pub fn find(&mut self, l: usize, r: usize) -> R::T {
        self.propagate(l);
        self.propagate(r - 1);
        let mut x = l + self.size;
        let mut y = r + self.size;
        let mut p = R::e();
        let mut q = R::e();
        while x < y {
            if x & 1 == 1 {
                p = R::fold(p, self.eval(x));
                x += 1;
            }
            if y & 1 == 1 {
                y -= 1;
                q = R::fold(self.eval(y), q);
            }
            x >>= 1;
            y >>= 1;
        }
        R::fold(p, q)
    }
}
// ---------- end Lazy Segment Tree ----------

use std::io::Read;
use std::io::Write;

struct R;
impl TE for R {
    type T = (ModInt, ModInt);
    type E = ModInt;
    fn fold(l: Self::T, r: Self::T) -> Self::T {
        (l.0 + r.0, l.1 + r.1)
    }
    fn eval(x: Self::T, f: Self::E) -> Self::T {
        (x.0 + x.1 * f, x.1)
    }
    fn merge(g: Self::E, h: Self::E) -> Self::E {
        g + h
    }
    fn e() -> Self::T {
        (ModInt::zero(), ModInt::zero())
    }
    fn id() -> Self::E {
        ModInt::zero()
    }
}

fn run() {
    let out = std::io::stdout();
    let mut out = std::io::BufWriter::new(out.lock());
    let mut s = String::new();
    std::io::stdin().read_to_string(&mut s).unwrap();
    let mut it = s.trim().split_whitespace();
    let n: usize = it.next().unwrap().parse().unwrap();
    let s: Vec<ModInt> = (0..n).map(|_| ModInt(it.next().unwrap().parse().unwrap())).collect();
    let c: Vec<ModInt> = (0..n).map(|_| ModInt(it.next().unwrap().parse().unwrap())).collect();
    let mut hld = HLD::new(n);
    for _ in 1..n {
        let a = it.next().unwrap().parse::<usize>().unwrap() - 1;
        let b = it.next().unwrap().parse::<usize>().unwrap() - 1;
        hld.add_edge(a, b);
    }
    hld.build(0);
    let mut a = vec![(ModInt::zero(), ModInt::zero()); n];
    for i in 0..n {
        let k = hld.sub_tree(i).0;
        a[k] = (s[i], c[i]);
    }
    let mut s = LazySegmentTree::<R>::build_by(&a);
    let q: usize = it.next().unwrap().parse().unwrap();
    for _ in 0..q {
        let op: u8 = it.next().unwrap().parse().unwrap();
        let x: usize = it.next().unwrap().parse::<usize>().unwrap() - 1;
        let y: usize = it.next().unwrap().parse::<usize>().unwrap() - 1;
        let path = hld.path(x, y);
        if op == 0 {
            let z = ModInt(it.next().unwrap().parse().unwrap());
            for (l, r) in path {
                s.update(l, r, z);
            }
        } else {
            let mut ans = ModInt::zero();
            for (l, r) in path {
                ans += s.find(l, r).0;
            }
            writeln!(out, "{}", ans.0).ok();
        }
    }
}

fn main() {
    run();
}
0