結果
| 問題 |
No.206 数の積集合を求めるクエリ
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-11-18 17:59:57 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 4,580 bytes |
| コンパイル時間 | 703 ms |
| コンパイル使用メモリ | 89,976 KB |
| 最終ジャッジ日時 | 2024-11-14 21:51:22 |
| 合計ジャッジ時間 | 2,039 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp:34:22: error: aggregate 'std::array<FFT::num, 262144> FFT::root' has incomplete type and cannot be defined
34 | array<num, maxN> root;
| ^~~~
main.cpp:35:22: error: aggregate 'std::array<int, 262144> FFT::rev' has incomplete type and cannot be defined
35 | array<int, maxN> rev;
| ^~~
main.cpp: In function 'void FFT::fft(std::array<num, 262144>&, std::array<num, 262144>&)':
main.cpp:61:38: error: no match for 'operator[]' (operand types are 'std::array<FFT::num, 262144>' and 'int')
61 | for (int i = 0; i < N; ++i) f[i] = a[rev[i]];
| ^
main.cpp:65:30: error: no match for 'operator[]' (operand types are 'std::array<FFT::num, 262144>' and 'int')
65 | num z = f[i+j+k]* root[j+k];
| ^
main.cpp:66:22: error: no match for 'operator[]' (operand types are 'std::array<FFT::num, 262144>' and 'int')
66 | f[i+j+k] = f[i+j] - z;
| ^
main.cpp:66:33: error: no match for 'operator[]' (operand types are 'std::array<FFT::num, 262144>' and 'int')
66 | f[i+j+k] = f[i+j] - z;
| ^
main.cpp:67:22: error: no match for 'operator[]' (operand types are 'std::array<FFT::num, 262144>' and 'int')
67 | f[i+j] = f[i+j] + z;
| ^
main.cpp:67:31: error: no match for 'operator[]' (operand types are 'std::array<FFT::num, 262144>' and 'int')
67 | f[i+j] = f[i+j] + z;
| ^
main.cpp: At global scope:
main.cpp:72:22: error: aggregate 'std::array<FFT::num, 262144> FFT::a' has incomplete type and cannot be defined
72 | array<num, maxN> a, b, f, g;
| ^
main.cpp:72:25: error: aggregate 'std::array<FFT::num, 262144> FFT::b' has incomplete type and cannot be defined
72 | a
ソースコード
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>
#include <limits>
static const int MOD = 1000000007;
using ll = long long;
using u32 = uint32_t;
using namespace std;
template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;
namespace FFT {
const int max_base = 18, maxN = 1 << max_base; // N <= 2e5
const double PI = acos(-1);
struct num {
double x{}, y{};
num() = default;
num(double x, double y): x(x), y(y) {}
explicit num(double r): x(cos(r)), y(sin(r)) {}
};
num operator+(num a, num b) { return {a.x + b.x, a.y + b.y}; }
num operator-(num a, num b) { return {a.x - b.x, a.y - b.y}; }
num operator*(num a, num b) { return {a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x}; }
num conj(num a) {return {a.x, -a.y}; }
array<num, maxN> root;
array<int, maxN> rev;
bool is_root_prepared = false;
void prepare_root(){
if(is_root_prepared) return;
is_root_prepared = true;
root[1] = num(1, 0);
for (int i = 1; i < max_base; ++i) {
num x(2*PI / (1LL << (i+1)));
for (ll j = (1LL << (i-1)); j < (1LL << (i)); ++j) {
root[2*j] = root[j];
root[2*j+1] = root[j]*x;
}
}
}
int base, N;
int lastN = -1;
void prepare_rev(){
if(lastN == N) return;
lastN = N;
for (int i = 0; i < N; ++i) rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (base - 1));
}
void fft(array<num, maxN> &a, array<num, maxN> &f){
for (int i = 0; i < N; ++i) f[i] = a[rev[i]];
for (int k = 1; k < N; k <<= 1) {
for (int i = 0; i < N; i += 2*k) {
for (int j = 0; j < k; ++j) {
num z = f[i+j+k]* root[j+k];
f[i+j+k] = f[i+j] - z;
f[i+j] = f[i+j] + z;
}
}
}
}
array<num, maxN> a, b, f, g;
array<ll, maxN> A, B, C;
void multi_mod(){
for (int i = 0; i < N; ++i) {
a[i] = num(A[i], 0);
}
for (int i = 0; i < N; ++i) {
b[i] = num(B[i], 0);
}
fft(a, f);
fft(b, g);
for (int i = 0; i < N; ++i) {
int j = (N-i) &(N-1);
num a1 = (f[i] + conj(f[j])) * num(0.5, 0);
num b1 = (g[i] + conj(g[j])) * num(0.5/N, 0);
a[j] = a1*b1;
}
fft(a, f);
for (int i = 0; i < N; ++i) {
C[i] = f[i].x + 0.5;
}
}
void prepare_AB(int n1, int n2){
base = 1;
N = 2;
while(N < n1+n2) base++, N <<= 1;
for (int i = n1; i < N; ++i) A[i] = 0;
for (int i = n2; i < N; ++i) B[i] = 0;
prepare_root();
prepare_rev();
}
void multi_mod(int n1, int n2){
prepare_AB(n1, n2);
multi_mod();
}
}
struct poly {
vector<int> v;
poly() = default;
explicit poly(vector<int> vv) : v(std::move(vv)) {};
int size() {return (int)v.size(); }
poly cut(int len){
if(len < v.size()) v.resize(static_cast<unsigned long>(len));
return *this;
}
inline int& operator[] (int i) {return v[i]; }
};
poly operator+(poly &A, poly &B){
poly C;
C.v = vector<int>(max(A.size(), B.size()));
for (int i = 0; i < A.size(); ++i) C[i] = A[i];
for (int i = 0; i < B.size(); ++i) (C[i] += B[i]) %= MOD;
return C;
}
poly operator-(poly &A, poly &B){
poly C;
C.v = vector<int>(max(A.size(), B.size()));
for (int i = 0; i < A.size(); ++i) C[i] = A[i];
for (int i = 0; i < B.size(); ++i) (C[i] += MOD-B[i]) %= MOD;
return C;
}
poly operator* (poly &A, poly &B){
poly C;
C.v = vector<int>(static_cast<unsigned long>(A.size() + B.size() - 1));
for (int i = 0; i < A.size(); ++i) FFT::A[i] = A[i];
for (int i = 0; i < A.size(); ++i) FFT::B[i] = B[i];
FFT::multi_mod(A.size(), B.size());
for (int i = 0; i < C.size(); ++i) C[i] = static_cast<int>(FFT::C[i]);
return C;
}
int main() {
int l, m, n;
cin >> l >> m >> n;
vector<int> a(n+1, 0), b(n+1, 0);
for (int i = 0; i < l; ++i) {
int x; scanf("%d", &x);
a[x]++;
}
for (int i = 0; i < m; ++i) {
int x; scanf("%d", &x);
b[n-x]++;
}
poly A(a), B(b);
poly C = A*B;
int q;
cin >> q;
for (int i = 0; i < q; ++i) {
printf("%d\n", C[n+i]);
}
return 0;
}