結果

問題 No.206 数の積集合を求めるクエリ
ユーザー firiexpfiriexp
提出日時 2019-11-18 17:59:57
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 4,580 bytes
コンパイル時間 703 ms
コンパイル使用メモリ 89,976 KB
最終ジャッジ日時 2024-11-14 21:51:22
合計ジャッジ時間 2,039 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
main.cpp:34:22: error: aggregate 'std::array<FFT::num, 262144> FFT::root' has incomplete type and cannot be defined
   34 |     array<num, maxN> root;
      |                      ^~~~
main.cpp:35:22: error: aggregate 'std::array<int, 262144> FFT::rev' has incomplete type and cannot be defined
   35 |     array<int, maxN> rev;
      |                      ^~~
main.cpp: In function 'void FFT::fft(std::array<num, 262144>&, std::array<num, 262144>&)':
main.cpp:61:38: error: no match for 'operator[]' (operand types are 'std::array<FFT::num, 262144>' and 'int')
   61 |         for (int i = 0; i < N; ++i) f[i] = a[rev[i]];
      |                                      ^
main.cpp:65:30: error: no match for 'operator[]' (operand types are 'std::array<FFT::num, 262144>' and 'int')
   65 |                     num z = f[i+j+k]* root[j+k];
      |                              ^
main.cpp:66:22: error: no match for 'operator[]' (operand types are 'std::array<FFT::num, 262144>' and 'int')
   66 |                     f[i+j+k] = f[i+j] - z;
      |                      ^
main.cpp:66:33: error: no match for 'operator[]' (operand types are 'std::array<FFT::num, 262144>' and 'int')
   66 |                     f[i+j+k] = f[i+j] - z;
      |                                 ^
main.cpp:67:22: error: no match for 'operator[]' (operand types are 'std::array<FFT::num, 262144>' and 'int')
   67 |                     f[i+j] = f[i+j] + z;
      |                      ^
main.cpp:67:31: error: no match for 'operator[]' (operand types are 'std::array<FFT::num, 262144>' and 'int')
   67 |                     f[i+j] = f[i+j] + z;
      |                               ^
main.cpp: At global scope:
main.cpp:72:22: error: aggregate 'std::array<FFT::num, 262144> FFT::a' has incomplete type and cannot be defined
   72 |     array<num, maxN> a, b, f, g;
      |                      ^
main.cpp:72:25: error: aggregate 'std::array<FFT::num, 262144> FFT::b' has incomplete type and cannot be defined
   72 |     a

ソースコード

diff #

#include <iostream>
#include <algorithm>
#include <iomanip>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>
#include <limits>


static const int MOD = 1000000007;
using ll = long long;
using u32 = uint32_t;
using namespace std;

template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;

namespace FFT {
    const int max_base = 18, maxN = 1 << max_base; // N <= 2e5
    const double PI = acos(-1);
    struct num {
        double x{}, y{};
        num() = default;
        num(double x, double y): x(x), y(y) {}
        explicit num(double r): x(cos(r)), y(sin(r)) {}
    };
    num operator+(num a, num b) { return {a.x + b.x, a.y + b.y}; }
    num operator-(num a, num b) { return {a.x - b.x, a.y - b.y}; }
    num operator*(num a, num b) { return {a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x}; }
    num conj(num a) {return {a.x, -a.y}; }
    array<num, maxN> root;
    array<int, maxN> rev;
    bool is_root_prepared = false;

    void prepare_root(){
        if(is_root_prepared) return;
        is_root_prepared = true;
        root[1] = num(1, 0);
        for (int i = 1; i < max_base; ++i) {
            num x(2*PI / (1LL << (i+1)));
            for (ll j = (1LL << (i-1)); j < (1LL << (i)); ++j) {
                root[2*j] = root[j];
                root[2*j+1] = root[j]*x;
            }
        }
    }

    int base, N;
    int lastN = -1;

    void prepare_rev(){
        if(lastN == N) return;
        lastN = N;
        for (int i = 0; i < N; ++i) rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (base - 1));
    }

    void fft(array<num, maxN> &a, array<num, maxN> &f){
        for (int i = 0; i < N; ++i) f[i] = a[rev[i]];
        for (int k = 1; k < N; k <<= 1) {
            for (int i = 0; i < N; i += 2*k) {
                for (int j = 0; j < k; ++j) {
                    num z = f[i+j+k]* root[j+k];
                    f[i+j+k] = f[i+j] - z;
                    f[i+j] = f[i+j] + z;
                }
            }
        }
    }
    array<num, maxN> a, b, f, g;
    array<ll, maxN> A, B, C;

    void multi_mod(){
        for (int i = 0; i < N; ++i) {
            a[i] = num(A[i], 0);
        }
        for (int i = 0; i < N; ++i) {
            b[i] = num(B[i], 0);
        }
        fft(a, f);
        fft(b, g);
        for (int i = 0; i < N; ++i) {
            int j = (N-i) &(N-1);
            num a1 = (f[i] + conj(f[j])) * num(0.5, 0);
            num b1 = (g[i] + conj(g[j])) * num(0.5/N, 0);
            a[j] = a1*b1;
        }
        fft(a, f);
        for (int i = 0; i < N; ++i) {
            C[i] = f[i].x + 0.5;
        }
    }

    void prepare_AB(int n1, int n2){
        base = 1;
        N = 2;
        while(N < n1+n2) base++, N <<= 1;
        for (int i = n1; i < N; ++i) A[i] = 0;
        for (int i = n2; i < N; ++i) B[i] = 0;
        prepare_root();
        prepare_rev();
    }

    void multi_mod(int n1, int n2){
        prepare_AB(n1, n2);
        multi_mod();
    }
}

struct poly {
    vector<int> v;
    poly() = default;
    explicit poly(vector<int> vv) : v(std::move(vv)) {};
    int size() {return (int)v.size(); }
    poly cut(int len){
        if(len < v.size()) v.resize(static_cast<unsigned long>(len));
        return *this;
    }
    inline int& operator[] (int i) {return v[i]; }
};

poly operator+(poly &A, poly &B){
    poly C;
    C.v = vector<int>(max(A.size(), B.size()));
    for (int i = 0; i < A.size(); ++i) C[i] = A[i];
    for (int i = 0; i < B.size(); ++i) (C[i] += B[i]) %= MOD;
    return C;
}

poly operator-(poly &A, poly &B){
    poly C;
    C.v = vector<int>(max(A.size(), B.size()));
    for (int i = 0; i < A.size(); ++i) C[i] = A[i];
    for (int i = 0; i < B.size(); ++i) (C[i] += MOD-B[i]) %= MOD;
    return C;
}

poly operator* (poly &A, poly &B){
    poly C;
    C.v = vector<int>(static_cast<unsigned long>(A.size() + B.size() - 1));
    for (int i = 0; i < A.size(); ++i) FFT::A[i] = A[i];
    for (int i = 0; i < A.size(); ++i) FFT::B[i] = B[i];
    FFT::multi_mod(A.size(), B.size());
    for (int i = 0; i < C.size(); ++i) C[i] = static_cast<int>(FFT::C[i]);
    return C;
}

int main() {
    int l, m, n;
    cin >> l >> m >> n;
    vector<int> a(n+1, 0), b(n+1, 0);
    for (int i = 0; i < l; ++i) {
        int x; scanf("%d", &x);
        a[x]++;
    }
    for (int i = 0; i < m; ++i) {
        int x; scanf("%d", &x);
        b[n-x]++;
    }
    poly A(a), B(b);
    poly C = A*B;
    int q;
    cin >> q;
    for (int i = 0; i < q; ++i) {
        printf("%d\n", C[n+i]);
    }
    return 0;
}
0