結果
問題 | No.129 お年玉(2) |
ユーザー |
![]() |
提出日時 | 2015-07-28 06:34:32 |
言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 399 ms / 5,000 ms |
コード長 | 4,558 bytes |
コンパイル時間 | 1,526 ms |
コンパイル使用メモリ | 168,356 KB |
実行使用メモリ | 18,848 KB |
最終ジャッジ日時 | 2024-11-28 00:06:16 |
合計ジャッジ時間 | 11,308 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 46 |
ソースコード
#include <bits/stdc++.h>using namespace std;template<typename T> inline T gcd(T a, T b) {return __gcd(a, b);}template<typename T> inline T lcm(T a, T b) {return a / gcd(a, b) * b;}template<typename T> inline T floor(T a, T b) {return a / b * b <= a ? a / b : a / b - 1;}template<typename T> inline T ceil(T a, T b) {return floor(a + b - 1, b);}template<typename T> inline T round(T a, T b) {return floor(a + b / 2);}template<typename T> inline T mod(T a, T b) {return a - floor(a, b) * b;}template<typename T> class Combination {private:vector<vector<T>> comb;public:Combination(int n = 0) : comb(n, vector<T>(n, 0)) {for (int i = 0; i < n; ++i) comb[i][0] = 1;for (int i = 1; i < n; ++i) {for (int j = 1; j < n; ++j) {comb[i][j] = comb[i - 1][j] + comb[i - 1][j - 1];}}}T combination(int n, int m) {if (n < m) return 0;if (n < (int)comb.size()) return comb[n][m];T res = 1;for (int i = 0; i < min(m, n - m); ++i) res = res * (n - i) / (i + 1);return res;}T combination_safety(int n, int m) {if (n < m) return 0;if (n < (int)comb.size()) return comb[n][m];m = min(m, n - m);vector<int> a(m), b(m);iota(a.begin(), a.end(), n - m + 1);iota(b.begin(), b.end(), 1);for (auto i : b) {for (auto& j : a) {auto g = gcd(i, j);i /= g;j /= g;if (i == 1) break;}}T res = 1;for (auto i : a) res = res * i;return res;}T repetition(int n, int r) {return combination(n + r - 1, r);}};namespace arithmetic {template<typename T> class Addition {public:template<typename V> T operator+(const V& v) const {return T(static_cast<const T&>(*this)) += v;}};template<typename T> class Subtraction {public:template<typename V> T operator-(const V& v) const {return T(static_cast<const T&>(*this)) -= v;}};template<typename T> class Multiplication {public:template<typename V> T operator*(const V& v) const {return T(static_cast<const T&>(*this)) *= v;}};template<typename T> class Division {public:template<typename V> T operator/(const V& v) const {return T(static_cast<const T&>(*this)) /= v;}};template<typename T> class Modulus {public:template<typename V> T operator%(const V& v) const {return T(static_cast<const T&>(*this)) %= v;}};}template<typename T> class IndivisibleArithmetic : public arithmetic::Addition<T>, public arithmetic::Subtraction<T>, public arithmetic::Multiplication<T> {};template<typename T> class Arithmetic : public IndivisibleArithmetic<T>, public arithmetic::Division<T> {};class Inverse {private:long long mod;vector<long long> inv;public:Inverse() {}Inverse(long long mod, long long n = 1000000) : mod(mod) {inv = vector<long long>(n, 1);for (int i = 2; i < n; ++i) inv[i] = inv[mod % i] * (mod - mod / i) % mod;}long long operator()(long long a) const {if (a < (int)inv.size()) return inv[a];long long b = mod, x = 1, y = 0;while (b) {long long t = a / b;swap(a -= t * b, b);swap(x -= t * y, y);}return (x %= mod) < 0 ? x + mod : x;}};class Mint : public Arithmetic<Mint> {private:static long long mod;static Inverse inverse;long long val;public:Mint() {}Mint(const long long& val) {this->val = val % mod;if (this->val < 0) this->val += mod;}static void setMod(const long long& m) {mod = m;inverse = Inverse(m);}Mint operator+=(const Mint& m) {val += m.val;if (val >= mod) val -= mod;return *this;}Mint operator-=(const Mint& m) {val -= m.val;if (val < 0) val += mod;return *this;}Mint operator*=(const Mint& m) {val *= m.val;val %= mod;return *this;}Mint operator/=(const Mint& m) {val *= inverse(m.val);val %= mod;return *this;}Mint operator++() {return val += 1;}operator long long() {return val;}Mint identity() const {return 1;}};long long Mint::mod = 1000000007;Inverse Mint::inverse(1000000007);ostream& operator<<(ostream& os, Mint a) {os << (long long)a;return os;}istream& operator>>(istream& is, Mint& a) {long long n;is >> n;a = n;return is;}int main() {long long n, m;cin >> n >> m;n /= 1000;n %= m;Mint::setMod(1000000000);Combination<Mint> comb;cout << comb.combination_safety(m, n) << endl;}