結果

問題 No.129 お年玉(2)
ユーザー not_522
提出日時 2015-07-28 06:34:32
言語 C++11(廃止可能性あり)
(gcc 13.3.0)
結果
AC  
実行時間 399 ms / 5,000 ms
コード長 4,558 bytes
コンパイル時間 1,526 ms
コンパイル使用メモリ 168,356 KB
実行使用メモリ 18,848 KB
最終ジャッジ日時 2024-11-28 00:06:16
合計ジャッジ時間 11,308 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 46
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
template<typename T> inline T gcd(T a, T b) {
return __gcd(a, b);
}
template<typename T> inline T lcm(T a, T b) {
return a / gcd(a, b) * b;
}
template<typename T> inline T floor(T a, T b) {
return a / b * b <= a ? a / b : a / b - 1;
}
template<typename T> inline T ceil(T a, T b) {
return floor(a + b - 1, b);
}
template<typename T> inline T round(T a, T b) {
return floor(a + b / 2);
}
template<typename T> inline T mod(T a, T b) {
return a - floor(a, b) * b;
}
template<typename T> class Combination {
private:
vector<vector<T>> comb;
public:
Combination(int n = 0) : comb(n, vector<T>(n, 0)) {
for (int i = 0; i < n; ++i) comb[i][0] = 1;
for (int i = 1; i < n; ++i) {
for (int j = 1; j < n; ++j) {
comb[i][j] = comb[i - 1][j] + comb[i - 1][j - 1];
}
}
}
T combination(int n, int m) {
if (n < m) return 0;
if (n < (int)comb.size()) return comb[n][m];
T res = 1;
for (int i = 0; i < min(m, n - m); ++i) res = res * (n - i) / (i + 1);
return res;
}
T combination_safety(int n, int m) {
if (n < m) return 0;
if (n < (int)comb.size()) return comb[n][m];
m = min(m, n - m);
vector<int> a(m), b(m);
iota(a.begin(), a.end(), n - m + 1);
iota(b.begin(), b.end(), 1);
for (auto i : b) {
for (auto& j : a) {
auto g = gcd(i, j);
i /= g;
j /= g;
if (i == 1) break;
}
}
T res = 1;
for (auto i : a) res = res * i;
return res;
}
T repetition(int n, int r) {
return combination(n + r - 1, r);
}
};
namespace arithmetic {
template<typename T> class Addition {
public:
template<typename V> T operator+(const V& v) const {
return T(static_cast<const T&>(*this)) += v;
}
};
template<typename T> class Subtraction {
public:
template<typename V> T operator-(const V& v) const {
return T(static_cast<const T&>(*this)) -= v;
}
};
template<typename T> class Multiplication {
public:
template<typename V> T operator*(const V& v) const {
return T(static_cast<const T&>(*this)) *= v;
}
};
template<typename T> class Division {
public:
template<typename V> T operator/(const V& v) const {
return T(static_cast<const T&>(*this)) /= v;
}
};
template<typename T> class Modulus {
public:
template<typename V> T operator%(const V& v) const {
return T(static_cast<const T&>(*this)) %= v;
}
};
}
template<typename T> class IndivisibleArithmetic : public arithmetic::Addition<T>, public arithmetic::Subtraction<T>, public arithmetic
    ::Multiplication<T> {};
template<typename T> class Arithmetic : public IndivisibleArithmetic<T>, public arithmetic::Division<T> {};
class Inverse {
private:
long long mod;
vector<long long> inv;
public:
Inverse() {}
Inverse(long long mod, long long n = 1000000) : mod(mod) {
inv = vector<long long>(n, 1);
for (int i = 2; i < n; ++i) inv[i] = inv[mod % i] * (mod - mod / i) % mod;
}
long long operator()(long long a) const {
if (a < (int)inv.size()) return inv[a];
long long b = mod, x = 1, y = 0;
while (b) {
long long t = a / b;
swap(a -= t * b, b);
swap(x -= t * y, y);
}
return (x %= mod) < 0 ? x + mod : x;
}
};
class Mint : public Arithmetic<Mint> {
private:
static long long mod;
static Inverse inverse;
long long val;
public:
Mint() {}
Mint(const long long& val) {
this->val = val % mod;
if (this->val < 0) this->val += mod;
}
static void setMod(const long long& m) {
mod = m;
inverse = Inverse(m);
}
Mint operator+=(const Mint& m) {
val += m.val;
if (val >= mod) val -= mod;
return *this;
}
Mint operator-=(const Mint& m) {
val -= m.val;
if (val < 0) val += mod;
return *this;
}
Mint operator*=(const Mint& m) {
val *= m.val;
val %= mod;
return *this;
}
Mint operator/=(const Mint& m) {
val *= inverse(m.val);
val %= mod;
return *this;
}
Mint operator++() {return val += 1;}
operator long long() {
return val;
}
Mint identity() const {
return 1;
}
};
long long Mint::mod = 1000000007;
Inverse Mint::inverse(1000000007);
ostream& operator<<(ostream& os, Mint a) {
os << (long long)a;
return os;
}
istream& operator>>(istream& is, Mint& a) {
long long n;
is >> n;
a = n;
return is;
}
int main() {
long long n, m;
cin >> n >> m;
n /= 1000;
n %= m;
Mint::setMod(1000000000);
Combination<Mint> comb;
cout << comb.combination_safety(m, n) << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0