結果
問題 | No.167 N^M mod 10 |
ユーザー |
![]() |
提出日時 | 2015-07-28 10:29:38 |
言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 67 ms / 1,000 ms |
コード長 | 3,863 bytes |
コンパイル時間 | 1,342 ms |
コンパイル使用メモリ | 163,084 KB |
実行使用メモリ | 18,996 KB |
最終ジャッジ日時 | 2024-09-22 01:17:56 |
合計ジャッジ時間 | 4,228 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 27 |
ソースコード
#include <bits/stdc++.h>using namespace std;namespace arithmetic {template<typename T> class Addition {public:template<typename V> T operator+(const V& v) const {return T(static_cast<const T&>(*this)) += v;}};template<typename T> class Subtraction {public:template<typename V> T operator-(const V& v) const {return T(static_cast<const T&>(*this)) -= v;}};template<typename T> class Multiplication {public:template<typename V> T operator*(const V& v) const {return T(static_cast<const T&>(*this)) *= v;}};template<typename T> class Division {public:template<typename V> T operator/(const V& v) const {return T(static_cast<const T&>(*this)) /= v;}};template<typename T> class Modulus {public:template<typename V> T operator%(const V& v) const {return T(static_cast<const T&>(*this)) %= v;}};}template<typename T> class IndivisibleArithmetic : public arithmetic::Addition<T>, public arithmetic::Subtraction<T>, public arithmetic::Multiplication<T> {};template<typename T> class Arithmetic : public IndivisibleArithmetic<T>, public arithmetic::Division<T> {};class Inverse {private:long long mod;vector<long long> inv;public:Inverse() {}Inverse(long long mod, long long n = 1000000) : mod(mod) {inv = vector<long long>(n, 1);for (int i = 2; i < n; ++i) inv[i] = inv[mod % i] * (mod - mod / i) % mod;}long long operator()(long long a) const {if (a < (int)inv.size()) return inv[a];long long b = mod, x = 1, y = 0;while (b) {long long t = a / b;swap(a -= t * b, b);swap(x -= t * y, y);}return (x %= mod) < 0 ? x + mod : x;}};class Mint : public Arithmetic<Mint> {private:static long long mod;static Inverse inverse;long long val;public:Mint() {}Mint(const long long& val) {this->val = val % mod;if (this->val < 0) this->val += mod;}static void setMod(const long long& m) {mod = m;inverse = Inverse(m);}Mint operator+=(const Mint& m) {val += m.val;if (val >= mod) val -= mod;return *this;}Mint operator-=(const Mint& m) {val -= m.val;if (val < 0) val += mod;return *this;}Mint operator*=(const Mint& m) {val *= m.val;val %= mod;return *this;}Mint operator/=(const Mint& m) {val *= inverse(m.val);val %= mod;return *this;}Mint operator++() {return val += 1;}operator long long() {return val;}Mint identity() const {return 1;}};long long Mint::mod = 1000000007;Inverse Mint::inverse(1000000007);ostream& operator<<(ostream& os, Mint a) {os << (long long)a;return os;}istream& operator>>(istream& is, Mint& a) {long long n;is >> n;a = n;return is;}template<typename T> T pow(T& m, long long n) {if (n == 0) {return m.identity();} else if (n < 0) {return m.identity() / pow(m, -n);}T mm = pow(m, n / 2);mm *= mm;if (n % 2) mm *= m;return mm;}template<typename T> inline T toInteger(const string&);template<> inline int toInteger<int>(const string& s) {return stoi(s);}template<> inline long toInteger<long>(const string& s) {return stol(s);}template<> inline long long toInteger<long long>(const string& s) {return stoll(s);}template<typename T = long long> inline T toInteger(const string& s, int n) {T res = 0;for (char c : s) {if (isdigit(c)) res = res * n + c - '0';else if (isalpha(c)) res = res * n + tolower(c) - 'a' + 10;}return s[0] == '-' ? -res : res;}int main() {string n, m;cin >> n >> m;m = "0" + m;Mint::setMod(10);Mint nn = toInteger<int>(n.substr(n.size() - 1));int mm = toInteger<int>(m.substr(m.size() - 2));if (m.size() != 2u && mm == 0) mm = 100;cout << pow(nn, mm) << endl;}