結果
問題 | No.931 Multiplicative Convolution |
ユーザー |
![]() |
提出日時 | 2019-11-22 21:36:47 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,078 bytes |
コンパイル時間 | 1,259 ms |
コンパイル使用メモリ | 108,412 KB |
実行使用メモリ | 10,256 KB |
最終ジャッジ日時 | 2024-10-11 02:59:46 |
合計ジャッジ時間 | 4,461 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 WA * 1 |
other | AC * 4 WA * 10 |
ソースコード
#include<iostream>#include<string>#include<algorithm>#include<vector>#include<iomanip>#include<math.h>#include<complex>#include<queue>#include<deque>#include<stack>#include<map>#include<set>#include<bitset>#include<functional>#include<assert.h>#include<numeric>using namespace std;#define REP(i,m,n) for(int i=(int)(m) ; i < (int) (n) ; ++i )#define rep(i,n) REP(i,0,n)using ll = long long;const int inf=1e9+7;const ll longinf=1LL<<60 ;const ll mod=1e9+7 ;template< int mod >struct NumberTheoreticTransform {vector< int > rev, rts;int base, max_base, root;NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} {assert(mod >= 3 && mod % 2 == 1);auto tmp = mod - 1;max_base = 0;while(tmp % 2 == 0) tmp >>= 1, max_base++;root = 2;while(mod_pow(root, (mod - 1) >> 1) == 1) ++root;assert(mod_pow(root, mod - 1) == 1);root = mod_pow(root, (mod - 1) >> max_base);}inline int mod_pow(int x, int n) {int ret = 1;while(n > 0) {if(n & 1) ret = mul(ret, x);x = mul(x, x);n >>= 1;}return ret;}inline int inverse(int x) {return mod_pow(x, mod - 2);}inline unsigned add(unsigned x, unsigned y) {x += y;if(x >= mod) x -= mod;return x;}inline unsigned mul(unsigned a, unsigned b) {return 1ull * a * b % (unsigned long long) mod;}void ensure_base(int nbase) {if(nbase <= base) return;rev.resize(1 << nbase);rts.resize(1 << nbase);for(int i = 0; i < (1 << nbase); i++) {rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));}assert(nbase <= max_base);while(base < nbase) {int z = mod_pow(root, 1 << (max_base - 1 - base));for(int i = 1 << (base - 1); i < (1 << base); i++) {rts[i << 1] = rts[i];rts[(i << 1) + 1] = mul(rts[i], z);}++base;}}void ntt(vector< int > &a) {const int n = (int) a.size();assert((n & (n - 1)) == 0);int zeros = __builtin_ctz(n);ensure_base(zeros);int shift = base - zeros;for(int i = 0; i < n; i++) {if(i < (rev[i] >> shift)) {swap(a[i], a[rev[i] >> shift]);}}for(int k = 1; k < n; k <<= 1) {for(int i = 0; i < n; i += 2 * k) {for(int j = 0; j < k; j++) {int z = mul(a[i + j + k], rts[j + k]);a[i + j + k] = add(a[i + j], mod - z);a[i + j] = add(a[i + j], z);}}}}vector< int > multiply(vector< int > a, vector< int > b) {int need = a.size() + b.size() - 1;int nbase = 1;while((1 << nbase) < need) nbase++;ensure_base(nbase);int sz = 1 << nbase;a.resize(sz, 0);b.resize(sz, 0);ntt(a);ntt(b);int inv_sz = inverse(sz);for(int i = 0; i < sz; i++) {a[i] = mul(a[i], mul(b[i], inv_sz));}reverse(a.begin() + 1, a.end());ntt(a);a.resize(need);return a;}};ll powmod(ll n,ll k, ll p){ll ret=1;while(k){if(k&1)ret=ret*n%p;n=n*n%p;k>>=1;}return ret;}int main(){int p;cin>>p;if(p==2){ll x,y;cin>>x>>y;cout<<x*y%mod<<endl;return 0;}int r = 2;while(1){bool ok = true;for(int j=2;j*j<p;++j){if((p-1)%j==0){if(powmod(r,j,p)==1){ok=false;break;}if(powmod(r,(p-1)/j,p)==1){ok=false;break;}}}if(ok)break;++r;}vector<ll> a(p),b(p);rep(i,p-1)cin>>a[i+1];rep(i,p-1)cin>>b[i+1];vector<int> c(p), d(p);rep(i,p-1){c[i]=a[powmod(r,i,p)];d[i]=b[powmod(r,i,p)];}NumberTheoreticTransform<998244353> ntt;auto ret = ntt.multiply(c, d);vector<int> ans(p);rep(i,ret.size()){ans[powmod(r,i,p)]+=ret[i];}rep(i,p-1){cout<<ans[i+1]%mod<<" \n"[i+2==p];}return 0;}