結果
| 問題 | 
                            No.577 Prime Powerful Numbers
                             | 
                    
| コンテスト | |
| ユーザー | 
                             mban
                         | 
                    
| 提出日時 | 2019-12-01 04:39:26 | 
| 言語 | C#(csc)  (csc 3.9.0)  | 
                    
| 結果 | 
                             
                                WA
                                 
                             
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 6,486 bytes | 
| コンパイル時間 | 838 ms | 
| コンパイル使用メモリ | 115,160 KB | 
| 実行使用メモリ | 26,744 KB | 
| 最終ジャッジ日時 | 2024-11-21 04:12:09 | 
| 合計ジャッジ時間 | 1,630 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge3 / judge5 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | WA * 1 | 
| other | AC * 1 WA * 9 | 
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System;
using System.Text;
using CompLib.Mathematics;
public class Program
{
    public void Solve()
    {
        var sc = new Scanner();
        int q = sc.NextInt();
        var sb = new StringBuilder();
        for (int i = 0; i < q; i++)
        {
            sb.AppendLine(Query(sc.NextLong()));
        }
        Console.Write(sb.ToString());
    }
    string Query(long n)
    {
        // Goldbach's conjecture
        // n <= 10^18では真
        if (n % 2 == 0)
        {
            return n == 2 ? "No" : "Yes";
        }
        // nは奇数
        // p,qが奇素数ならnは偶数になるはず
        // どちらかは2
        // 対称性より p = 2とする
        if (n < 5) return "No";
        for (long pa = 2; pa < n; pa *= 2)
        {
            long qb = n - pa;
            for (long b = 1; b <= 60; b++)
            {
                long min = 0;
                long max = (long) Math.Pow(long.MaxValue, (double) 1 / b);
                while (max - min > 1)
                {
                    long med = (max + min) / 2;
                    if (Pow(med, b) <= qb)
                    {
                        min = med;
                    }
                    else
                    {
                        max = med;
                    }
                }
                if (min < 2) break;
                if (Pow(min, b) == qb && PrimalityTest.IsPrime(min))
                {
                    return "Yes";
                }
            }
        }
        return "No";
    }
    public long Pow(long a, long b)
    {
        if (b == 0) return 1;
        long res = Pow(a * a, b / 2);
        if (b % 2 == 1) res *= a;
        return res;
    }
    public static void Main(string[] args)
    {
        new Program().Solve();
    }
}
namespace CompLib.Mathematics
{
    using System;
    public static class PrimalityTest
    {
        private static Random Random = new Random();
        /// <summary>
        /// Miller-Rabin素数判定法を用いてnが素数か判定 O(k log^2 n)
        /// </summary>
        /// <param name="n"></param>
        /// <param name="k"></param>
        /// <returns></returns>
        public static bool IsPrime(long n, int k = 60)
        {
            if (n < 2) return false;
            if (n == 2) return true;
            if (n % 2 == 0) return false;
            if (n < 10000)
            {
                for (int i = 3; i * i <= n; i++)
                {
                    if (n % i == 0)
                    {
                        return false;
                    }
                }
                return true;
            }
            if (!StrongFermatTest(2, n))
            {
                return false;
            }
            for (int i = 0; i < k; i++)
            {
                if (!StrongFermatTest(NextLong(2, n), n))
                {
                    return false;
                }
            }
            return true;
        }
        public static bool StrongFermatTest(long a, long n)
        {
            long t = n - 1;
            long t2 = t;
            while (t % 2 == 0)
            {
                t /= 2;
                if (Pow(a, t, n) == t2)
                {
                    return true;
                }
            }
            return Pow(a, t, n) == 1;
        }
        private static long Pow(long x, long y, long mod)
        {
            x %= mod;
            long result = 1;
            while (y > 0)
            {
                if (y % 2 == 1)
                {
                    result = Multiplication(result, x, mod);
                }
                x = Multiplication(x, x, mod);
                y /= 2;
            }
            return result;
        }
        private static long Multiplication(long a, long b, long mod)
        {
            if (mod < int.MaxValue)
            {
                return (a * b) % mod;
            }
            long result = 0;
            while (b > 0)
            {
                if (b % 2 == 1)
                {
                    result += a;
                    result %= mod;
                }
                a *= 2;
                a %= mod;
                b /= 2;
            }
            return result;
        }
        private static long NextLong(long min, long max)
        {
            long d = max - min;
            long result = Random.Next();
            result <<= 31;
            result += Random.Next();
            result %= d;
            return result + min;
        }
    }
}
class Scanner
{
    public Scanner()
    {
        _pos = 0;
        _line = new string[0];
    }
    const char Separator = ' ';
    private int _pos;
    private string[] _line;
    #region スペース区切りで取得
    public string Next()
    {
        if (_pos >= _line.Length)
        {
            _line = Console.ReadLine().Split(Separator);
            _pos = 0;
        }
        return _line[_pos++];
    }
    public int NextInt()
    {
        return int.Parse(Next());
    }
    public long NextLong()
    {
        return long.Parse(Next());
    }
    public double NextDouble()
    {
        return double.Parse(Next());
    }
    #endregion
    #region 型変換
    private int[] ToIntArray(string[] array)
    {
        var result = new int[array.Length];
        for (int i = 0; i < array.Length; i++)
        {
            result[i] = int.Parse(array[i]);
        }
        return result;
    }
    private long[] ToLongArray(string[] array)
    {
        var result = new long[array.Length];
        for (int i = 0; i < array.Length; i++)
        {
            result[i] = long.Parse(array[i]);
        }
        return result;
    }
    private double[] ToDoubleArray(string[] array)
    {
        var result = new double[array.Length];
        for (int i = 0; i < array.Length; i++)
        {
            result[i] = double.Parse(array[i]);
        }
        return result;
    }
    #endregion
    #region 配列取得
    public string[] Array()
    {
        if (_pos >= _line.Length)
            _line = Console.ReadLine().Split(Separator);
        _pos = _line.Length;
        return _line;
    }
    public int[] IntArray()
    {
        return ToIntArray(Array());
    }
    public long[] LongArray()
    {
        return ToLongArray(Array());
    }
    public double[] DoubleArray()
    {
        return ToDoubleArray(Array());
    }
    #endregion
}
            
            
            
        
            
mban