結果

問題 No.940 ワープ ε=ε=ε=ε=ε=│;p>д<│
ユーザー CuriousFairy315CuriousFairy315
提出日時 2019-12-02 15:39:04
言語 Java
(openjdk 23)
結果
AC  
実行時間 917 ms / 5,000 ms
コード長 11,881 bytes
コンパイル時間 5,086 ms
コンパイル使用メモリ 89,588 KB
実行使用メモリ 208,452 KB
最終ジャッジ日時 2024-11-28 09:48:04
合計ジャッジ時間 16,971 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 227 ms
136,788 KB
testcase_01 AC 225 ms
136,528 KB
testcase_02 AC 224 ms
136,764 KB
testcase_03 AC 227 ms
136,892 KB
testcase_04 AC 241 ms
136,720 KB
testcase_05 AC 285 ms
139,364 KB
testcase_06 AC 239 ms
136,804 KB
testcase_07 AC 276 ms
139,484 KB
testcase_08 AC 231 ms
136,852 KB
testcase_09 AC 274 ms
139,448 KB
testcase_10 AC 225 ms
137,148 KB
testcase_11 AC 227 ms
136,804 KB
testcase_12 AC 270 ms
139,440 KB
testcase_13 AC 265 ms
139,348 KB
testcase_14 AC 220 ms
136,676 KB
testcase_15 AC 537 ms
178,848 KB
testcase_16 AC 917 ms
207,716 KB
testcase_17 AC 268 ms
139,604 KB
testcase_18 AC 274 ms
139,584 KB
testcase_19 AC 271 ms
139,444 KB
testcase_20 AC 291 ms
139,700 KB
testcase_21 AC 294 ms
139,260 KB
testcase_22 AC 678 ms
182,396 KB
testcase_23 AC 911 ms
207,584 KB
testcase_24 AC 675 ms
179,844 KB
testcase_25 AC 905 ms
208,132 KB
testcase_26 AC 891 ms
208,452 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

package yukicoder_3679;

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;


public class Main3 {

	InputStream is;
	PrintWriter out;
	String INPUT = "";

	static final int MAX = 3123456;

	static final long[] fac = new long[MAX];
	static final long[] ifac = new long[MAX];
	static final long[] inv = new long[MAX];
	static final long[] pw2 = new long[MAX];
	static final int MOD = 1_000_000_007;

	{
		fac[0] = fac[1] = ifac[0] = ifac[1] = inv[0] = inv[1] = pw2[0] = 1;
		pw2[1] = 2;
		for (int i = 2; i < fac.length; ++i) {
			fac[i] = i * fac[i - 1] % MOD;
			inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
			ifac[i] = inv[i] * ifac[i - 1] % MOD;
			pw2[i] = 2 * pw2[i - 1] % MOD;
		}
	}

	static final long comb(int n, int k) {
		return fac[n] * ifac[k] % MOD * ifac[n - k] % MOD;
	}

	void solve() {
		int X = ni(), Y = ni(), Z = ni();


		if (X == 0 && Y == 0 && Z == 0) {
			out.println(1);
			return;
		}

		int[] xxx = new int[] { X, Y, Z };
		Arrays.sort(xxx);
		X = xxx[2];
		Y = xxx[1];
		Z = xxx[0];
		long[] f = new long[Math.min(X + Y, Math.min(Y + Z, Z + X)) + 1];
		long[] g = new long[Math.min(X, Y) + 1];
		long[] h = new long[Z + 1];
		for (int i = 0; i < f.length; ++i) {
			f[i] = pw2[X + Y + Z - 1 - i] * (i % 2 == 0 ? 1 : (MOD - 1)) % MOD * fac[X + Y + Z - i] % MOD
					* ifac[X + Y - i] % MOD;
		}
		for (int i = 0; i < g.length; ++i) {
			g[Math.min(X, Y) - i] = fac[X + Y - i] * ifac[X - i] % MOD * ifac[Y - i] % MOD * ifac[i] % MOD;
		}
		for (int i = 0; i < h.length; ++i) {
			h[Z - i] = ifac[Z - i] * ifac[i] % MOD;
		}
		long[] fg = convolute(f, g, 3, MOD);
		long ret = 0;
		for (int i = Math.max(0, Math.min(X, Y) + Z - h.length + 1); i < Math.min(fg.length,
				Math.min(X, Y) + Z + 1); ++i) {
			ret = (ret + fg[i] * h[Math.min(X, Y) + Z - i] % MOD) % MOD;
		}
		out.println(ret);
	}

	public static final int[] NTTPrimes = {1053818881, 1051721729, 1045430273, 1012924417, 1007681537, 1004535809, 998244353, 985661441, 976224257, 975175681};
	public static final int[] NTTPrimitiveRoots = {7, 6, 3, 5, 3, 3, 3, 3, 3, 17};
	//	public static final int[] NTTPrimes = {1012924417, 1004535809, 998244353, 985661441, 975175681, 962592769, 950009857, 943718401, 935329793, 924844033};
	//	public static final int[] NTTPrimitiveRoots = {5, 3, 3, 3, 17, 7, 7, 7, 3, 5};

	public static long[] convoluteSimply(long[] a, long[] b, int P, int g) {
		int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length) - 1) << 2);
		long[] fa = nttmb(a, m, false, P, g);
		long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
		for (int i = 0; i < m; i++ ) {
			fa[i] = fa[i] * fb[i] % P;
		}
		return nttmb(fa, m, true, P, g);
	}

	public static long[] convolute(long[] a, long[] b) {
		int USE = 2;
		int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length) - 1) << 2);
		long[][] fs = new long[USE][];
		for (int k = 0; k < USE; k++ ) {
			int P = NTTPrimes[k], g = NTTPrimitiveRoots[k];
			long[] fa = nttmb(a, m, false, P, g);
			long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
			for (int i = 0; i < m; i++ ) {
				fa[i] = fa[i] * fb[i] % P;
			}
			fs[k] = nttmb(fa, m, true, P, g);
		}

		int[] mods = Arrays.copyOf(NTTPrimes, USE);
		long[] gammas = garnerPrepare(mods);
		int[] buf = new int[USE];
		for (int i = 0; i < fs[0].length; i++ ) {
			for (int j = 0; j < USE; j++ )
				buf[j] = (int)fs[j][i];
			long[] res = garnerBatch(buf, mods, gammas);
			long ret = 0;
			for (int j = res.length - 1; j >= 0; j-- )
				ret = ret * mods[j] + res[j];
			fs[0][i] = ret;
		}
		return fs[0];
	}

	public static long[] convolute(long[] a, long[] b, int USE, int mod) {
		int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length) - 1) << 2);
		long[][] fs = new long[USE][];
		for (int k = 0; k < USE; k++ ) {
			int P = NTTPrimes[k], g = NTTPrimitiveRoots[k];
			long[] fa = nttmb(a, m, false, P, g);
			long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
			for (int i = 0; i < m; i++ ) {
				fa[i] = fa[i] * fb[i] % P;
			}
			fs[k] = nttmb(fa, m, true, P, g);
		}

		int[] mods = Arrays.copyOf(NTTPrimes, USE);
		long[] gammas = garnerPrepare(mods);
		int[] buf = new int[USE];
		for (int i = 0; i < fs[0].length; i++ ) {
			for (int j = 0; j < USE; j++ )
				buf[j] = (int)fs[j][i];
			long[] res = garnerBatch(buf, mods, gammas);
			long ret = 0;
			for (int j = res.length - 1; j >= 0; j-- )
				ret = (ret * mods[j] + res[j]) % mod;
			fs[0][i] = ret;
		}
		return fs[0];
	}

	// static int[] wws = new int[270000]; // outer faster

	// Modifed Montgomery + Barrett
	private static long[] nttmb(long[] src, int n, boolean inverse, int P, int g) {
		long[] dst = Arrays.copyOf(src, n);

		int h = Integer.numberOfTrailingZeros(n);
		long K = Integer.highestOneBit(P) << 1;
		int H = Long.numberOfTrailingZeros(K) * 2;
		long M = K * K / P;

		int[] wws = new int[1 << h - 1];
		long dw = inverse ? pow(g, P - 1 - (P - 1) / n, P) : pow(g, (P - 1) / n, P);
		long w = (1L << 32) % P;
		for (int k = 0; k < 1 << h - 1; k++ ) {
			wws[k] = (int)w;
			w = modh(w * dw, M, H, P);
		}
		long J = invl(P, 1L << 32);
		for (int i = 0; i < h; i++ ) {
			for (int j = 0; j < 1 << i; j++ ) {
				for (int k = 0, s = j << h - i, t = s | 1 << h - i - 1; k < 1 << h - i - 1; k++ , s++ , t++ ) {
					long u = (dst[s] - dst[t] + 2 * P) * wws[k];
					dst[s] += dst[t];
					if (dst[s] >= 2 * P) dst[s] -= 2 * P;
					//					long Q = (u&(1L<<32)-1)*J&(1L<<32)-1;
					long Q = (u << 32) * J >>> 32;
					dst[t] = (u >>> 32) - (Q * P >>> 32) + P;
				}
			}
			if (i < h - 1) {
				for (int k = 0; k < 1 << h - i - 2; k++ )
					wws[k] = wws[k * 2];
			}
		}
		for (int i = 0; i < n; i++ ) {
			if (dst[i] >= P) dst[i] -= P;
		}
		for (int i = 0; i < n; i++ ) {
			int rev = Integer.reverse(i) >>> -h;
			if (i < rev) {
				long d = dst[i];
				dst[i] = dst[rev];
				dst[rev] = d;
			}
		}

		if (inverse) {
			long in = invl(n, P);
			for (int i = 0; i < n; i++ )
				dst[i] = modh(dst[i] * in, M, H, P);
		}

		return dst;
	}

	// Modified Shoup + Barrett
	private static long[] nttsb(long[] src, int n, boolean inverse, int P, int g) {
		long[] dst = Arrays.copyOf(src, n);

		int h = Integer.numberOfTrailingZeros(n);
		long K = Integer.highestOneBit(P) << 1;
		int H = Long.numberOfTrailingZeros(K) * 2;
		long M = K * K / P;

		long dw = inverse ? pow(g, P - 1 - (P - 1) / n, P) : pow(g, (P - 1) / n, P);
		long[] wws = new long[1 << h - 1];
		long[] ws = new long[1 << h - 1];
		long w = 1;
		for (int k = 0; k < 1 << h - 1; k++ ) {
			wws[k] = (w << 32) / P;
			ws[k] = w;
			w = modh(w * dw, M, H, P);
		}
		for (int i = 0; i < h; i++ ) {
			for (int j = 0; j < 1 << i; j++ ) {
				for (int k = 0, s = j << h - i, t = s | 1 << h - i - 1; k < 1 << h - i - 1; k++ , s++ , t++ ) {
					long ndsts = dst[s] + dst[t];
					if (ndsts >= 2 * P) ndsts -= 2 * P;
					long T = dst[s] - dst[t] + 2 * P;
					long Q = wws[k] * T >>> 32;
					dst[s] = ndsts;
					dst[t] = ws[k] * T - Q * P & (1L << 32) - 1;
				}
			}
			//			dw = dw * dw % P;
			if (i < h - 1) {
				for (int k = 0; k < 1 << h - i - 2; k++ ) {
					wws[k] = wws[k * 2];
					ws[k] = ws[k * 2];
				}
			}
		}
		for (int i = 0; i < n; i++ ) {
			if (dst[i] >= P) dst[i] -= P;
		}
		for (int i = 0; i < n; i++ ) {
			int rev = Integer.reverse(i) >>> -h;
			if (i < rev) {
				long d = dst[i];
				dst[i] = dst[rev];
				dst[rev] = d;
			}
		}

		if (inverse) {
			long in = invl(n, P);
			for (int i = 0; i < n; i++ ) {
				dst[i] = modh(dst[i] * in, M, H, P);
			}
		}

		return dst;
	}

	static final long mask = (1L << 31) - 1;

	public static long modh(long a, long M, int h, int mod) {
		long r = a - ((M * (a & mask) >>> 31) + M * (a >>> 31) >>> h - 31) * mod;
		return r < mod ? r : r - mod;
	}

	private static long[] garnerPrepare(int[] m) {
		int n = m.length;
		assert n == m.length;
		if (n == 0) return new long[0];
		long[] gamma = new long[n];
		for (int k = 1; k < n; k++ ) {
			long prod = 1;
			for (int i = 0; i < k; i++ ) {
				prod = prod * m[i] % m[k];
			}
			gamma[k] = invl(prod, m[k]);
		}
		return gamma;
	}

	private static long[] garnerBatch(int[] u, int[] m, long[] gamma) {
		int n = u.length;
		assert n == m.length;
		long[] v = new long[n];
		v[0] = u[0];
		for (int k = 1; k < n; k++ ) {
			long temp = v[k - 1];
			for (int j = k - 2; j >= 0; j-- ) {
				temp = (temp * m[j] + v[j]) % m[k];
			}
			v[k] = (u[k] - temp) * gamma[k] % m[k];
			if (v[k] < 0) v[k] += m[k];
		}
		return v;
	}



	public static long invl(long a, long mod) {
		long b = mod;
		long p = 1, q = 0;
		while (b > 0) {
			long c = a / b;
			long d;
			d = a;
			a = b;
			b = d % b;
			d = p;
			p = q;
			q = d - c * q;
		}
		return p < 0 ? p + mod : p;
	}


	public static long pow(long a, long n, long mod) {
		//		a %= mod;
		long ret = 1;
		int x = 63 - Long.numberOfLeadingZeros(n);
		for (; x >= 0; x-- ) {
			ret = ret * ret % mod;
			if (n << 63 - x < 0) ret = ret * a % mod;
		}
		return ret;
	}


	void run() throws Exception {
		is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
		out = new PrintWriter(System.out);

		long s = System.currentTimeMillis();
		solve();
		out.flush();
		if (!INPUT.isEmpty()) tr(System.currentTimeMillis() - s + "ms");
		//		Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){
		//			@Override
		//			public void run() {
		//				long s = System.currentTimeMillis();
		//				solve();
		//				out.flush();
		//				if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
		//			}
		//		};
		//		t.start();
		//		t.join();
	}

	public static void main(String[] args) throws Exception {
		new Main3().run();
	}

	private byte[] inbuf = new byte[1024];
	public int lenbuf = 0, ptrbuf = 0;

	private int readByte() {
		if (lenbuf == -1) throw new InputMismatchException();
		if (ptrbuf >= lenbuf) {
			ptrbuf = 0;
			try {
				lenbuf = is.read(inbuf);
			} catch (IOException e) {
				throw new InputMismatchException();
			}
			if (lenbuf <= 0) return -1;
		}
		return inbuf[ptrbuf++ ];
	}

	private boolean isSpaceChar(int c) {
		return !(c >= 33 && c <= 126);
	}

	private int skip() {
		int b;
		while ((b = readByte()) != -1 && isSpaceChar(b));
		return b;
	}

	private double nd() {
		return Double.parseDouble(ns());
	}

	private char nc() {
		return (char)skip();
	}

	private String ns() {
		int b = skip();
		StringBuilder sb = new StringBuilder();
		while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
			sb.appendCodePoint(b);
			b = readByte();
		}
		return sb.toString();
	}

	private char[] ns(int n) {
		char[] buf = new char[n];
		int b = skip(), p = 0;
		while (p < n && !(isSpaceChar(b))) {
			buf[p++ ] = (char)b;
			b = readByte();
		}
		return n == p ? buf : Arrays.copyOf(buf, p);
	}

	private int[] na(int n) {
		int[] a = new int[n];
		for (int i = 0; i < n; i++ )
			a[i] = ni();
		return a;
	}

	private long[] nal(int n) {
		long[] a = new long[n];
		for (int i = 0; i < n; i++ )
			a[i] = nl();
		return a;
	}

	private char[][] nm(int n, int m) {
		char[][] map = new char[n][];
		for (int i = 0; i < n; i++ )
			map[i] = ns(m);
		return map;
	}

	private int[][] nmi(int n, int m) {
		int[][] map = new int[n][];
		for (int i = 0; i < n; i++ )
			map[i] = na(m);
		return map;
	}

	private int ni() {
		return (int)nl();
	}

	private long nl() {
		long num = 0;
		int b;
		boolean minus = false;
		while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
		if (b == '-') {
			minus = true;
			b = readByte();
		}

		while (true) {
			if (b >= '0' && b <= '9') {
				num = num * 10 + (b - '0');
			} else {
				return minus ? -num : num;
			}
			b = readByte();
		}
	}

	private static void tr(Object... o) {
		System.out.println(Arrays.deepToString(o));
	}
}
0