結果
問題 | No.940 ワープ ε=ε=ε=ε=ε=│;p>д<│ |
ユーザー | pekempey |
提出日時 | 2019-12-03 00:36:18 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,970 bytes |
コンパイル時間 | 2,172 ms |
コンパイル使用メモリ | 180,032 KB |
実行使用メモリ | 230,244 KB |
最終ジャッジ日時 | 2024-11-28 10:00:29 |
合計ジャッジ時間 | 18,759 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 537 ms
218,728 KB |
testcase_01 | AC | 541 ms
218,724 KB |
testcase_02 | AC | 547 ms
218,464 KB |
testcase_03 | AC | 565 ms
218,468 KB |
testcase_04 | WA | - |
testcase_05 | AC | 546 ms
218,556 KB |
testcase_06 | AC | 540 ms
218,468 KB |
testcase_07 | AC | 550 ms
218,596 KB |
testcase_08 | AC | 548 ms
218,464 KB |
testcase_09 | AC | 551 ms
218,468 KB |
testcase_10 | AC | 543 ms
218,472 KB |
testcase_11 | AC | 550 ms
218,472 KB |
testcase_12 | AC | 544 ms
218,588 KB |
testcase_13 | AC | 550 ms
218,596 KB |
testcase_14 | AC | 577 ms
218,724 KB |
testcase_15 | AC | 556 ms
218,656 KB |
testcase_16 | AC | 552 ms
219,744 KB |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | AC | 552 ms
222,688 KB |
testcase_22 | WA | - |
testcase_23 | AC | 549 ms
220,136 KB |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; #define rep(i, n) for (int i = 0; i < (n); i++) #define repr(i, n) for (int i = (n) - 1; i >= 0; i--) #define repe(i, l, r) for (int i = (l); i < (r); i++) #define reper(i, l, r) for (int i = (r) - 1; i >= (l); i--) #define repi(i, l, r) for (int i = (l); i <= (r); i++) #define repir(i, l, r) for (int i = (r); i >= (l); i--) #define range(a) a.begin(), a.end() void initio() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } constexpr int MOD = 1000000007; class mint { int n; public: mint(int n_ = 0) : n(n_) {} explicit operator int() { return n; } friend mint operator-(mint a) { return -a.n + MOD * (a.n != 0); } friend mint operator+(mint a, mint b) { int x = a.n + b.n; return x - (x >= MOD) * MOD; } friend mint operator-(mint a, mint b) { int x = a.n - b.n; return x + (x < 0) * MOD; } friend mint operator*(mint a, mint b) { return (long long)a.n * b.n % MOD; } friend mint &operator+=(mint &a, mint b) { return a = a + b; } friend mint &operator-=(mint &a, mint b) { return a = a - b; } friend mint &operator*=(mint &a, mint b) { return a = a * b; } friend bool operator==(mint a, mint b) { return a.n == b.n; } friend bool operator!=(mint a, mint b) { return a.n != b.n; } friend istream &operator>>(istream &i, mint &a) { return i >> a.n; } friend ostream &operator<<(ostream &o, mint a) { return o << a.n; } }; vector<mint> F_{1, 1}, R_{1, 1}, I_{0, 1}; void check_fact(int n) { for (int i = I_.size(); i <= n; i++) { I_.push_back(I_[MOD % i] * (MOD - MOD / i)); F_.push_back(F_[i - 1] * i); R_.push_back(R_[i - 1] * I_[i]); } } mint I(int n) { check_fact(n); return n < 0 ? 0 : I_[n]; } mint F(int n) { check_fact(n); return n < 0 ? 0 : F_[n]; } mint R(int n) { check_fact(n); return n < 0 ? 0 : R_[n]; } mint C(int n, int r) { return F(n) * R(n - r) * R(r); } mint P(int n, int r) { return F(n) * R(n - r); } mint H(int n, int r) { return n == 0 ? (r == 0) : C(n + r - 1, r); } template<int N> class FFT { using C = complex<double>; C rots[N]; public: FFT() { const double pi = acos(-1); for (int i = 0; i < N / 2; i++) { rots[i + N / 2].real(cos(2 * pi / N * i)); rots[i + N / 2].imag(sin(2 * pi / N * i)); } for (int i = N / 2 - 1; i >= 1; i--) { rots[i] = rots[i * 2]; } } private: inline static C mul(C x, C y) { return C(x.real() * y.real() - x.imag() * y.imag(), x.real() * y.imag() + x.imag() * y.real()); } void fft(vector<C> &a, bool rev) { const int n = a.size(); int i = 0; for (int j = 1; j < n - 1; j++) { for (int k = n >> 1; k > (i ^= k); k >>= 1); if (j < i) swap(a[i], a[j]); } for (int i = 1; i < n; i *= 2) { for (int j = 0; j < n; j += i * 2) { for (int k = 0; k < i; k++) { C s = a[j + k + 0]; C t = mul(a[j + k + i], rots[i + k]); a[j + k + 0] = s + t; a[j + k + i] = s - t; } } } if (rev) { reverse(a.begin() + 1, a.end()); for (int i = 0; i < n; i++) { a[i] *= 1.0 / n; } } } public: vector<long long> convolution(vector<long long> a, vector<long long> b) { int t = 1; while (t < a.size() + b.size() - 1) t *= 2; vector<C> z(t); for (int i = 0; i < a.size(); i++) z[i].real(a[i]); for (int i = 0; i < b.size(); i++) z[i].imag(b[i]); fft(z, false); vector<C> w(t); for (int i = 0; i < t; i++) { C p = (z[i] + conj(z[(t - i) % t])) * C(0.5, 0); C q = (z[i] - conj(z[(t - i) % t])) * C(0, -0.5); w[i] = p * q; } fft(w, true); vector<long long> ans(a.size() + b.size() - 1); for (int i = 0; i < ans.size(); i++) { ans[i] = round(w[i].real()); } return ans; } vector<mint> convolution(vector<mint> a, vector<mint> b) { int t = 1; while (t < a.size() + b.size() - 1) t *= 2; vector<C> A(t), B(t); for (int i = 0; i < a.size(); i++) A[i] = C((int)a[i] & 0x7fff, (int)a[i] >> 15); for (int i = 0; i < b.size(); i++) B[i] = C((int)b[i] & 0x7fff, (int)b[i] >> 15); fft(A, false); fft(B, false); vector<C> X(t), Y(t); for (int i = 0; i < t; i++) { int j = (t - i) % t; C AL = (A[i] + conj(A[j])) * C(0.5, 0); C AH = (A[i] - conj(A[j])) * C(0, -0.5); C BL = (B[i] + conj(B[j])) * C(0.5, 0); C BH = (B[i] - conj(B[j])) * C(0, -0.5); X[i] = AL * BL + AH * BL * C(0, 1); Y[i] = AL * BH + AH * BH * C(0, 1); } fft(X, true); fft(Y, true); vector<mint> ans(a.size() + b.size() - 1); for (int i = 0; i < ans.size(); i++) { long long l = (long long)round(X[i].real()) % MOD; long long m = ((long long)round(X[i].imag()) + (long long)round(Y[i].real())) % MOD; long long h = (long long)round(Y[i].imag()) % MOD; ans[i] = (l + (m << 15) + (h << 30)) % MOD; } return ans; } }; FFT<1 << 23> fft; mint alt(int n) { return n % 2 == 0 ? 1 : MOD - 1; } int main() { int X, Y, Z; cin >> X >> Y >> Z; vector<mint> A(1 << 19); vector<mint> B(1 << 19); for (int i = 0; i < A.size(); i++) { A[i] = alt(i) * R(i); B[i] = R(i) * F(i + X - 1) * F(i + Y - 1) * F(i + Z - 1) * R(i - 1) * R(i - 1) * R(i - 1); } A = fft.convolution(A, B); mint ans = 0; rep(i, A.size() / 2) { ans += A[i] * F(i); } ans *= R(X) * R(Y) * R(Z); cout << ans << endl; /* { mint ans; for (int k = 0; k <= 8000; k++) { mint v; for (int i = 0; i <= k; i++) { int j = k - i; mint s = i % 2 == 0 ? 1 : MOD - 1; // ans += s * C(k, i) * H(k - i, X) * H(k - i, Y) * H(k - i, Z); mint tmp = s * R(i) * R(j); tmp *= F(j + X - 1) * R(j - 1); tmp *= F(j + Y - 1) * R(j - 1); tmp *= F(j + Z - 1) * R(j - 1); v += tmp; } ans += v * F(k); } ans *= R(X) * R(Y) * R(Z); cout << ans << endl; } */ }