結果
| 問題 | No.940 ワープ ε=ε=ε=ε=ε=│;p>д<│ |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-12-03 00:39:39 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 5,991 bytes |
| 記録 | |
| コンパイル時間 | 1,939 ms |
| コンパイル使用メモリ | 180,796 KB |
| 実行使用メモリ | 445,412 KB |
| 最終ジャッジ日時 | 2024-11-28 10:26:12 |
| 合計ジャッジ時間 | 68,323 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 WA * 1 |
| other | AC * 20 WA * 2 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define repr(i, n) for (int i = (n) - 1; i >= 0; i--)
#define repe(i, l, r) for (int i = (l); i < (r); i++)
#define reper(i, l, r) for (int i = (r) - 1; i >= (l); i--)
#define repi(i, l, r) for (int i = (l); i <= (r); i++)
#define repir(i, l, r) for (int i = (r); i >= (l); i--)
#define range(a) a.begin(), a.end()
void initio() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); }
constexpr int MOD = 1000000007;
class mint {
int n;
public:
mint(int n_ = 0) : n(n_) {}
explicit operator int() { return n; }
friend mint operator-(mint a) { return -a.n + MOD * (a.n != 0); }
friend mint operator+(mint a, mint b) { int x = a.n + b.n; return x - (x >= MOD) * MOD; }
friend mint operator-(mint a, mint b) { int x = a.n - b.n; return x + (x < 0) * MOD; }
friend mint operator*(mint a, mint b) { return (long long)a.n * b.n % MOD; }
friend mint &operator+=(mint &a, mint b) { return a = a + b; }
friend mint &operator-=(mint &a, mint b) { return a = a - b; }
friend mint &operator*=(mint &a, mint b) { return a = a * b; }
friend bool operator==(mint a, mint b) { return a.n == b.n; }
friend bool operator!=(mint a, mint b) { return a.n != b.n; }
friend istream &operator>>(istream &i, mint &a) { return i >> a.n; }
friend ostream &operator<<(ostream &o, mint a) { return o << a.n; }
};
vector<mint> F_{1, 1}, R_{1, 1}, I_{0, 1};
void check_fact(int n) {
for (int i = I_.size(); i <= n; i++) {
I_.push_back(I_[MOD % i] * (MOD - MOD / i));
F_.push_back(F_[i - 1] * i);
R_.push_back(R_[i - 1] * I_[i]);
}
}
mint I(int n) { check_fact(n); return n < 0 ? 0 : I_[n]; }
mint F(int n) { check_fact(n); return n < 0 ? 0 : F_[n]; }
mint R(int n) { check_fact(n); return n < 0 ? 0 : R_[n]; }
mint C(int n, int r) { return F(n) * R(n - r) * R(r); }
mint P(int n, int r) { return F(n) * R(n - r); }
mint H(int n, int r) { return n == 0 ? (r == 0) : C(n + r - 1, r); }
template<int N>
class FFT {
using C = complex<long double>;
C rots[N];
public:
FFT() {
const long double pi = acos(-1.0L);
for (int i = 0; i < N / 2; i++) {
rots[i + N / 2].real(cos(2 * pi / N * i));
rots[i + N / 2].imag(sin(2 * pi / N * i));
}
for (int i = N / 2 - 1; i >= 1; i--) {
rots[i] = rots[i * 2];
}
}
private:
inline static C mul(C x, C y) {
return C(x.real() * y.real() - x.imag() * y.imag(), x.real() * y.imag() + x.imag() * y.real());
}
void fft(vector<C> &a, bool rev) {
const int n = a.size();
int i = 0;
for (int j = 1; j < n - 1; j++) {
for (int k = n >> 1; k > (i ^= k); k >>= 1);
if (j < i) swap(a[i], a[j]);
}
for (int i = 1; i < n; i *= 2) {
for (int j = 0; j < n; j += i * 2) {
for (int k = 0; k < i; k++) {
C s = a[j + k + 0];
C t = mul(a[j + k + i], rots[i + k]);
a[j + k + 0] = s + t;
a[j + k + i] = s - t;
}
}
}
if (rev) {
reverse(a.begin() + 1, a.end());
for (int i = 0; i < n; i++) {
a[i] *= 1.0 / n;
}
}
}
public:
vector<long long> convolution(vector<long long> a, vector<long long> b) {
int t = 1;
while (t < a.size() + b.size() - 1) t *= 2;
vector<C> z(t);
for (int i = 0; i < a.size(); i++) z[i].real(a[i]);
for (int i = 0; i < b.size(); i++) z[i].imag(b[i]);
fft(z, false);
vector<C> w(t);
for (int i = 0; i < t; i++) {
C p = (z[i] + conj(z[(t - i) % t])) * C(0.5L, 0.0L);
C q = (z[i] - conj(z[(t - i) % t])) * C(0.0L, -0.5L);
w[i] = p * q;
}
fft(w, true);
vector<long long> ans(a.size() + b.size() - 1);
for (int i = 0; i < ans.size(); i++) {
ans[i] = round(w[i].real());
}
return ans;
}
vector<mint> convolution(vector<mint> a, vector<mint> b) {
int t = 1;
while (t < a.size() + b.size() - 1) t *= 2;
vector<C> A(t), B(t);
for (int i = 0; i < a.size(); i++) A[i] = C((int)a[i] & 0x7fff, (int)a[i] >> 15);
for (int i = 0; i < b.size(); i++) B[i] = C((int)b[i] & 0x7fff, (int)b[i] >> 15);
fft(A, false);
fft(B, false);
vector<C> X(t), Y(t);
for (int i = 0; i < t; i++) {
int j = (t - i) % t;
C AL = (A[i] + conj(A[j])) * C(0.5, 0);
C AH = (A[i] - conj(A[j])) * C(0, -0.5);
C BL = (B[i] + conj(B[j])) * C(0.5, 0);
C BH = (B[i] - conj(B[j])) * C(0, -0.5);
X[i] = AL * BL + AH * BL * C(0, 1);
Y[i] = AL * BH + AH * BH * C(0, 1);
}
fft(X, true);
fft(Y, true);
vector<mint> ans(a.size() + b.size() - 1);
for (int i = 0; i < ans.size(); i++) {
long long l = (long long)round(X[i].real()) % MOD;
long long m = ((long long)round(X[i].imag()) + (long long)round(Y[i].real())) % MOD;
long long h = (long long)round(Y[i].imag()) % MOD;
ans[i] = (l + (m << 15) + (h << 30)) % MOD;
}
return ans;
}
};
FFT<1 << 22> fft;
mint alt(int n) {
return n % 2 == 0 ? 1 : MOD - 1;
}
int main() {
int X, Y, Z; cin >> X >> Y >> Z;
vector<mint> A(1 << 20);
vector<mint> B(1 << 20);
for (int i = 0; i < A.size(); i++) {
A[i] = alt(i) * R(i);
B[i] = R(i) * F(i + X - 1) * F(i + Y - 1) * F(i + Z - 1) * R(i - 1) * R(i - 1) * R(i - 1);
}
A = fft.convolution(A, B);
mint ans = 0;
rep(i, A.size() / 2) {
ans += A[i] * F(i);
}
ans *= R(X) * R(Y) * R(Z);
cout << ans << endl;
/*
{
mint ans;
for (int k = 0; k <= 8000; k++) {
mint v;
for (int i = 0; i <= k; i++) {
int j = k - i;
mint s = i % 2 == 0 ? 1 : MOD - 1;
// ans += s * C(k, i) * H(k - i, X) * H(k - i, Y) * H(k - i, Z);
mint tmp = s * R(i) * R(j);
tmp *= F(j + X - 1) * R(j - 1);
tmp *= F(j + Y - 1) * R(j - 1);
tmp *= F(j + Z - 1) * R(j - 1);
v += tmp;
}
ans += v * F(k);
}
ans *= R(X) * R(Y) * R(Z);
cout << ans << endl;
}
*/
}