結果
| 問題 |
No.940 ワープ ε=ε=ε=ε=ε=│;p>д<│
|
| コンテスト | |
| ユーザー |
beet
|
| 提出日時 | 2019-12-03 12:02:12 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 4,141 ms / 5,000 ms |
| コード長 | 8,260 bytes |
| コンパイル時間 | 2,879 ms |
| コンパイル使用メモリ | 212,760 KB |
| 最終ジャッジ日時 | 2025-01-08 07:08:35 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 22 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
using Int = long long;
template<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}
template<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}
template<typename T,T MOD = 1000000007>
struct Mint{
static constexpr T mod = MOD;
T v;
Mint():v(0){}
Mint(signed v):v(v){}
Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}
Mint pow(long long k){
Mint res(1),tmp(v);
while(k){
if(k&1) res*=tmp;
tmp*=tmp;
k>>=1;
}
return res;
}
static Mint add_identity(){return Mint(0);}
static Mint mul_identity(){return Mint(1);}
Mint inv(){return pow(MOD-2);}
Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
Mint& operator/=(Mint a){return (*this)*=a.inv();}
Mint operator+(Mint a) const{return Mint(v)+=a;}
Mint operator-(Mint a) const{return Mint(v)-=a;}
Mint operator*(Mint a) const{return Mint(v)*=a;}
Mint operator/(Mint a) const{return Mint(v)/=a;}
Mint operator-() const{return v?Mint(MOD-v):Mint(v);}
bool operator==(const Mint a)const{return v==a.v;}
bool operator!=(const Mint a)const{return v!=a.v;}
bool operator <(const Mint a)const{return v <a.v;}
static Mint comb(long long n,int k){
Mint num(1),dom(1);
for(int i=0;i<k;i++){
num*=Mint(n-i);
dom*=Mint(i+1);
}
return num/dom;
}
};
template<typename T,T MOD> constexpr T Mint<T, MOD>::mod;
template<typename T,T MOD>
ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}
namespace FFT{
using dbl = long double;
struct num{
dbl x,y;
num(){x=y=0;}
num(dbl x,dbl y):x(x),y(y){}
};
inline num operator+(num a,num b){
return num(a.x+b.x,a.y+b.y);
}
inline num operator-(num a,num b){
return num(a.x-b.x,a.y-b.y);
}
inline num operator*(num a,num b){
return num(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}
inline num conj(num a){
return num(a.x,-a.y);
}
int base=1;
vector<num> rts={{0,0},{1,0}};
vector<int> rev={0,1};
const dbl PI=asinl(1)*2;
void ensure_base(int nbase){
if(nbase<=base) return;
rev.resize(1<<nbase);
for(int i=0;i<(1<<nbase);i++)
rev[i]=(rev[i>>1]>>1)+((i&1)<<(nbase-1));
rts.resize(1<<nbase);
while(base<nbase){
dbl angle=2*PI/(1<<(base+1));
for(int i=1<<(base-1);i<(1<<base);i++){
rts[i<<1]=rts[i];
dbl angle_i=angle*(2*i+1-(1<<base));
rts[(i<<1)+1]=num(cos(angle_i),sin(angle_i));
}
base++;
}
}
void fft(vector<num> &as){
int n=as.size();
assert((n&(n-1))==0);
int zeros=__builtin_ctz(n);
ensure_base(zeros);
int shift=base-zeros;
for(int i=0;i<n;i++)
if(i<(rev[i]>>shift))
swap(as[i],as[rev[i]>>shift]);
for(int k=1;k<n;k<<=1){
for(int i=0;i<n;i+=2*k){
for(int j=0;j<k;j++){
num z=as[i+j+k]*rts[j+k];
as[i+j+k]=as[i+j]-z;
as[i+j]=as[i+j]+z;
}
}
}
}
vector<long long> multiply(vector<int> &as,vector<int> &bs){
int need=as.size()+bs.size()-1;
int nbase=0;
while((1<<nbase)<need) nbase++;
ensure_base(nbase);
int sz=1<<nbase;
vector<num> fa(sz);
for(int i=0;i<sz;i++){
int x=(i<(int)as.size()?as[i]:0);
int y=(i<(int)bs.size()?bs[i]:0);
fa[i]=num(x,y);
}
fft(fa);
num r(0,-0.25/sz);
for(int i=0;i<=(sz>>1);i++){
int j=(sz-i)&(sz-1);
num z=(fa[j]*fa[j]-conj(fa[i]*fa[i]))*r;
if(i!=j)
fa[j]=(fa[i]*fa[i]-conj(fa[j]*fa[j]))*r;
fa[i]=z;
}
fft(fa);
vector<long long> res(need);
for(int i=0;i<need;i++)
res[i]=round(fa[i].x);
return res;
}
};
template<typename T>
struct ArbitraryModConvolution{
using dbl=FFT::dbl;
using num=FFT::num;
vector<T> multiply(vector<T> as,vector<T> bs){
int need=as.size()+bs.size()-1;
int sz=1;
while(sz<need) sz<<=1;
vector<num> fa(sz),fb(sz);
for(int i=0;i<(int)as.size();i++)
fa[i]=num(as[i].v&((1<<15)-1),as[i].v>>15);
for(int i=0;i<(int)bs.size();i++)
fb[i]=num(bs[i].v&((1<<15)-1),bs[i].v>>15);
fft(fa);fft(fb);
dbl ratio=0.25/sz;
num r2(0,-1),r3(ratio,0),r4(0,-ratio),r5(0,1);
for(int i=0;i<=(sz>>1);i++){
int j=(sz-i)&(sz-1);
num a1=(fa[i]+conj(fa[j]));
num a2=(fa[i]-conj(fa[j]))*r2;
num b1=(fb[i]+conj(fb[j]))*r3;
num b2=(fb[i]-conj(fb[j]))*r4;
if(i!=j){
num c1=(fa[j]+conj(fa[i]));
num c2=(fa[j]-conj(fa[i]))*r2;
num d1=(fb[j]+conj(fb[i]))*r3;
num d2=(fb[j]-conj(fb[i]))*r4;
fa[i]=c1*d1+c2*d2*r5;
fb[i]=c1*d2+c2*d1;
}
fa[j]=a1*b1+a2*b2*r5;
fb[j]=a1*b2+a2*b1;
}
fft(fa);fft(fb);
vector<T> cs(need);
using ll = long long;
for(int i=0;i<need;i++){
ll aa=T(llround(fa[i].x)).v;
ll bb=T(llround(fb[i].x)).v;
ll cc=T(llround(fa[i].y)).v;
cs[i]=T(aa+(bb<<15)+(cc<<30));
}
return cs;
}
};
template<typename M>
class Enumeration{
private:
static vector<M> fact,finv,invs;
public:
static void init(int n){
n=min<decltype(M::mod)>(n,M::mod-1);
int m=fact.size();
if(n<m) return;
fact.resize(n+1,1);
finv.resize(n+1,1);
invs.resize(n+1,1);
if(m==0) m=1;
for(int i=m;i<=n;i++) fact[i]=fact[i-1]*M(i);
finv[n]=M(1)/fact[n];
for(int i=n;i>=m;i--) finv[i-1]=finv[i]*M(i);
for(int i=m;i<=n;i++) invs[i]=finv[i]*fact[i-1];
}
static M Fact(int n){
init(n);
return fact[n];
}
static M Finv(int n){
init(n);
return finv[n];
}
static M Invs(int n){
init(n);
return invs[n];
}
static M C(int n,int k){
if(n<k||k<0) return M(0);
init(n);
return fact[n]*finv[n-k]*finv[k];
}
static M P(int n,int k){
if(n<k||k<0) return M(0);
init(n);
return fact[n]*finv[n-k];
}
static M H(int n,int k){
if(n<0||k<0) return M(0);
if(!n&&!k) return M(1);
init(n+k-1);
return C(n+k-1,k);
}
static M S(int n,int k){
init(k);
M res(0);
for(int i=1;i<=k;i++){
M tmp=C(k,i)*M(i).pow(n);
if((k-i)&1) res-=tmp;
else res+=tmp;
}
return res*=finv[k];
}
static vector< vector<M> > D(int n,int m){
vector< vector<M> > dp(n+1,vector<M>(m+1,0));
dp[0][0]=M(1);
for(int i=0;i<=n;i++){
for(int j=1;j<=m;j++){
if(i-j>=0) dp[i][j]=dp[i][j-1]+dp[i-j][j];
else dp[i][j]=dp[i][j-1];
}
}
return dp;
}
static M B(int n,int k){
if(n==0) return M(1);
k=min(k,n);
init(k);
vector<M> dp(k+1);
dp[0]=M(1);
for(int i=1;i<=k;i++)
dp[i]=dp[i-1]+((i&1)?-finv[i]:finv[i]);
M res(0);
for(int i=1;i<=k;i++)
res+=M(i).pow(n)*finv[i]*dp[k-i];
return res;
}
static M montmort(int n){
init(n);
M res(0);
for(int k=2;k<=n;k++){
if(k&1) res-=finv[k];
else res+=finv[k];
}
return res*=fact[n];
}
static M LagrangePolynomial(vector<M> &y,M t){
int n=y.size()-1;
if(t.v<=n) return y[t.v];
init(n+1);
vector<M> dp(n+1,1),pd(n+1,1);
for(int i=0;i<n;i++) dp[i+1]=dp[i]*(t-M(i));
for(int i=n;i>0;i--) pd[i-1]=pd[i]*(t-M(i));
M res(0);
for(int i=0;i<=n;i++){
M tmp=y[i]*dp[i]*pd[i]*finv[i]*finv[n-i];
if((n-i)&1) res-=tmp;
else res+=tmp;
}
return res;
}
};
template<typename M>
vector<M> Enumeration<M>::fact=vector<M>();
template<typename M>
vector<M> Enumeration<M>::finv=vector<M>();
template<typename M>
vector<M> Enumeration<M>::invs=vector<M>();
//INSERT ABOVE HERE
signed main(){
using M = Mint<int>;
ArbitraryModConvolution<M> arb;
int x,y,z;
cin>>x>>y>>z;
int n=x+y+z;
if(n==0){
cout<<1<<endl;
return 0;
}
using E = Enumeration<M>;
E::init(n*2+100);
using Poly=vector<M>;
Poly gs(n+1,0);
for(int i=1;i<=n;i++)
gs[i]=E::H(i,x)*E::H(i,y)*E::H(i,z)*E::Finv(i);
Poly rs(n+1,0);
for(int i=0;i<=n;i++) rs[i]=(i&1?-E::Finv(i):E::Finv(i));
auto fs=arb.multiply(gs,rs);
M ans{0};
for(int i=1;i<=n;i++) ans+=fs[i]*E::Fact(i);
cout<<ans<<endl;
return 0;
}
beet