結果
問題 | No.940 ワープ ε=ε=ε=ε=ε=│;p>д<│ |
ユーザー | yosupot |
提出日時 | 2019-12-03 12:24:12 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 95 ms / 5,000 ms |
コード長 | 3,441 bytes |
コンパイル時間 | 2,244 ms |
コンパイル使用メモリ | 204,156 KB |
実行使用メモリ | 46,672 KB |
最終ジャッジ日時 | 2024-11-28 12:39:28 |
合計ジャッジ時間 | 5,466 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 58 ms
41,956 KB |
testcase_01 | AC | 57 ms
41,856 KB |
testcase_02 | AC | 58 ms
41,984 KB |
testcase_03 | AC | 57 ms
41,856 KB |
testcase_04 | AC | 57 ms
41,856 KB |
testcase_05 | AC | 57 ms
41,984 KB |
testcase_06 | AC | 57 ms
41,964 KB |
testcase_07 | AC | 57 ms
41,856 KB |
testcase_08 | AC | 57 ms
41,856 KB |
testcase_09 | AC | 58 ms
41,856 KB |
testcase_10 | AC | 58 ms
41,984 KB |
testcase_11 | AC | 58 ms
41,856 KB |
testcase_12 | AC | 59 ms
41,856 KB |
testcase_13 | AC | 58 ms
41,856 KB |
testcase_14 | AC | 58 ms
41,984 KB |
testcase_15 | AC | 61 ms
42,368 KB |
testcase_16 | AC | 67 ms
42,880 KB |
testcase_17 | AC | 77 ms
44,032 KB |
testcase_18 | AC | 79 ms
44,764 KB |
testcase_19 | AC | 75 ms
44,128 KB |
testcase_20 | AC | 86 ms
45,568 KB |
testcase_21 | AC | 69 ms
43,392 KB |
testcase_22 | AC | 85 ms
45,368 KB |
testcase_23 | AC | 66 ms
43,136 KB |
testcase_24 | AC | 88 ms
45,440 KB |
testcase_25 | AC | 93 ms
46,080 KB |
testcase_26 | AC | 95 ms
46,672 KB |
ソースコード
//#pragma GCC optimize("Ofast") //#pragma GCC target("avx") //#undef LOCAL #include <bits/stdc++.h> using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); } template <class T> using V = vector<T>; template <class T> using VV = V<V<T>>; template <uint MD> struct ModInt { using M = ModInt; const static M G; uint v; ModInt(ll _v = 0) { set_v(uint(_v % MD + MD)); } M& set_v(uint _v) { v = (_v < MD) ? _v : _v - MD; return *this; } explicit operator bool() const { return v != 0; } M operator-() const { return M() - *this; } M operator+(const M& r) const { return M().set_v(v + r.v); } M operator-(const M& r) const { return M().set_v(v + MD - r.v); } M operator*(const M& r) const { return M().set_v(uint(ull(v) * r.v % MD)); } M operator/(const M& r) const { return *this * r.inv(); } M& operator+=(const M& r) { return *this = *this + r; } M& operator-=(const M& r) { return *this = *this - r; } M& operator*=(const M& r) { return *this = *this * r; } M& operator/=(const M& r) { return *this = *this / r; } bool operator==(const M& r) const { return v == r.v; } M pow(ll n) const { M x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } M inv() const { return pow(MD - 2); } friend ostream& operator<<(ostream& os, const M& r) { return os << r.v; } }; using Mint = ModInt<TEN(9) + 7>; const int MN = 3 * 1100100; V<Mint> fact(MN + 1), iFac(MN + 1), p2(MN + 1); void first() { fact[0] = Mint(1); for (int i = 1; i <= MN; i++) { fact[i] = fact[i - 1] * Mint(i); } iFac[MN] = fact[MN].inv(); for (int i = MN; i >= 1; i--) { iFac[i - 1] = iFac[i] * Mint(i); } p2[0] = Mint(1); for (int i = 1; i <= MN; i++) { p2[i] = p2[i - 1] * Mint(2); } } Mint C(int n, int k) { if (n < k || k < 0) return Mint(0); return fact[n] * iFac[k] * iFac[n - k]; } int main() { first(); int x, y, z; cin >> x >> y >> z; if (x == 0 && y == 0 && z == 0) { cout << 1 << endl; return 0; } int n = x + y + z + 10; Mint ans = 0; // naive sol /* for (int k = 0; k <= n; k++) { for (int l = 0; l <= k; l++) { ans += p2[k] * C(k, l) * (((l + x + y + z) % 2) ? Mint(-1) : Mint(1)) * C(l, x) * C(l, y) * C(l, z); } } ans /= Mint(2);*/ // fix l // -> sum_l (sum_k 2^k C(k, l)) f(l) // sum_k 2^k C(k, l) // = [x^l] sum_{i = 0..n-1} (2 + 2x)^i // = [x^l] ({1 - (2 + 2x)^n} / {1 - (2 + 2x)}) // 1 - (2 + 2x)^n = 1 - 2^n (1 + x)^n V<Mint> po(n + 1); po[0] += Mint(1); for (int i = 0; i <= n; i++) { po[i] -= p2[n] * C(n, i); } // po / {1 - (2 + 2x)} // = po / {- 1 - 2x} // = -po / {1 + 2x} for (int i = 0; i <= n; i++) po[i] *= Mint(-1); Mint rem = po[n], i2 = Mint(2).inv(); po[n] = Mint(0); for (int i = n - 1; i >= 0; i--) { Mint nx = po[i]; po[i] = rem * i2; rem = nx - po[i]; } for (int l = 0; l < n; l++) { ans += po[l] * (((l + x + y + z) % 2) ? Mint(-1) : Mint(1)) * C(l, x) * C(l, y) * C(l, z); } ans /= Mint(2); cout << ans.v << endl; return 0; }