結果

問題 No.940 ワープ ε=ε=ε=ε=ε=│;p>д<│
ユーザー latte0119
提出日時 2019-12-03 14:06:56
言語 C++11(廃止可能性あり)
(gcc 13.3.0)
結果
AC  
実行時間 579 ms / 5,000 ms
コード長 8,161 bytes
コンパイル時間 1,746 ms
コンパイル使用メモリ 172,724 KB
実行使用メモリ 123,408 KB
最終ジャッジ日時 2024-11-28 13:08:51
合計ジャッジ時間 7,671 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 5
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
#define int long long
#define rep(i,n) for(int i=0;i<(n);i++)
#define reps(i,a,b) for(int i=(a);i<(b);i++)
#define pb push_back
#define eb emplace_back
#define all(v) (v).begin(),(v).end()
#define fi first
#define se second
using vint=vector<int>;
using pint=pair<int,int>;
using vpint=vector<pint>;
template<typename A,typename B>inline void chmin(A &a,B b){if(a>b)a=b;}
template<typename A,typename B>inline void chmax(A &a,B b){if(a<b)a=b;}
template<class A,class B>
ostream& operator<<(ostream& ost,const pair<A,B>&p){
ost<<"{"<<p.first<<","<<p.second<<"}";
return ost;
}
template<class T>
ostream& operator<<(ostream& ost,const vector<T>&v){
ost<<"{";
for(int i=0;i<v.size();i++){
if(i)ost<<",";
ost<<v[i];
}
ost<<"}";
return ost;
}
template<uint32_t mod>
struct ModInt{
uint32_t a;
ModInt& s(uint32_t vv){
a=vv<mod?vv:vv-mod;
return *this;
}
ModInt(int64_t x=0){s(x%mod+mod);}
ModInt& operator+=(const ModInt &x){return s(a+x.a);}
ModInt& operator-=(const ModInt &x){return s(a+mod-x.a);}
ModInt& operator*=(const ModInt &x){
a=uint64_t(a)*x.a%mod;
return *this;
}
ModInt& operator/=(const ModInt &x){
*this*=x.inv();
return *this;
}
ModInt operator+(const ModInt &x)const{return ModInt(*this)+=x;}
ModInt operator-(const ModInt &x)const{return ModInt(*this)-=x;}
ModInt operator*(const ModInt &x)const{return ModInt(*this)*=x;}
ModInt operator/(const ModInt &x)const{return ModInt(*this)/=x;}
bool operator==(const ModInt &x)const{return a==x.a;}
bool operator!=(const ModInt &x)const{return a!=x.a;}
bool operator<(const ModInt &x)const{return a<x.a;}
ModInt operator-()const{return ModInt()-*this;}
ModInt pow(int64_t n)const{
ModInt res(1),x(*this);
while(n){
if(n&1)res*=x;
x*=x;
n>>=1;
}
return res;
}
ModInt inv()const{return pow(mod-2);}
};
template<uint32_t mod>
istream& operator>>(istream& in,const ModInt<mod>& a){
return (in>>a.a);
}
template<uint32_t mod>
ostream& operator<<(ostream& out,const ModInt<mod>& a){
return (out<<a.a);
}
using mint=ModInt<1000000007>;
template<class Mint,int32_t lg>
struct ModIntTable{
int N;
vector<Mint>facts,finvs,invs;
ModIntTable():N(1<<lg),facts(N),finvs(N),invs(N){
const uint32_t mod=Mint(-1).a+1;
invs[1]=1;
for(int i=2;i<N;i++)invs[i]=invs[mod%i]*(mod-mod/i);
facts[0]=1;
finvs[0]=1;
for(int i=1;i<N;i++){
facts[i]=facts[i-1]*i;
finvs[i]=finvs[i-1]*invs[i];
}
}
inline Mint fact(int n)const{return facts[n];}
inline Mint finv(int n)const{return finvs[n];}
inline Mint inv(int n)const{return invs[n];}
inline Mint binom(int n,int k)const{return facts[n]*finvs[k]*finvs[n-k];}
inline Mint perm(int n,int k)const{return facts[n]*finvs[n-k];}
};
ModIntTable<mint,21>mtable;
/*
using Cd = complex<double>;
namespace std {
template<>
Cd& Cd::operator*=(const Cd& y) {
double a = this->real();
double b = this->imag();
double c = y.real();
double d = y.imag();
return *this=Cd(a*c-b*d, a*d+b*c);
}
}
template<class Mint,class C>
struct ArbitraryModConvolution15{
static constexpr double PI=acos(-1);
static void dft(vector<C>&f){
int n=f.size();
int s=__lg(n);
static vector<vector<C>>w(30);
w[0]=vector<C>(1,C(1.0,0.0));
for(int i=1;i<=s;i++){
if(w[i].size())continue;
w[i]=vector<C>(1<<i);
const double t=2*PI/(1<<i);
for(int j=0;j<1<<i;j++)w[i][j]=(j&1)?polar(1.0,j*t):w[i-1][j>>1];
}
for(int i=0,j=1;j<n-1;j++){
for(int k=n>>1;k>(i^=k);k>>=1);
if(i>j)swap(f[i],f[j]);
}
for(int m=1;m<=s;m++){
for(int i=0;i<n;i+=1<<m){
for(int j=0;j<1<<m-1;j++){
C f0=f[i+j],f1=w[m][j]*f[i+j+(1<<m-1)];
f[i+j]=f0+f1;
f[i+j+(1<<m-1)]=f0-f1;
}
}
}
}
static void idft(vector<C>&f){
dft(f);
reverse(f.begin()+1,f.end());
double in=1.0/f.size();
for(int i=0;i<f.size();i++)f[i]*=in;
}
static vector<Mint>convolute(vector<Mint>A,vector<Mint>B){
int n=1<<__lg(A.size()+B.size()-2)+1;
vector<C>g(n),h(n);
for(int i=0;i<A.size();i++)g[i]=C(A[i].a&~(~0<<15),A[i].a>>15);
for(int i=0;i<B.size();i++)h[i]=C(B[i].a&~(~0<<15),B[i].a>>15);
dft(g);
dft(h);
vector<C>gc=g;
reverse(gc.begin()+1,gc.end());
C I(0,1);
for(int i=0;i<n;i++){
gc[i]=conj(gc[i]);
C a=(g[i]+gc[i])*h[i]*0.5;
C b=(g[i]-gc[i])*h[i]*I*(-0.5);
g[i]=a;h[i]=b;
}
idft(g);
idft(h);
vector<Mint>AB(A.size()+B.size()-1);
for(int i=0;i<AB.size();i++){
Mint ll=g[i].real()+0.5;
Mint lh=g[i].imag()+0.5;
Mint hl=h[i].real()+0.5;
Mint hh=h[i].imag()+0.5;
AB[i]=(hh*(1<<15)+(lh+hl))*(1<<15)+ll;
}
return AB;
}
};
using FFT=ArbitraryModConvolution15<mint,complex<double>>;
*/
/*
long double ver
*/
using Cd = complex<long double>;
namespace std {
template<>
Cd& Cd::operator*=(const Cd& y) {
long double a = this->real();
long double b = this->imag();
long double c = y.real();
long double d = y.imag();
return *this=Cd(a*c-b*d, a*d+b*c);
}
}
template<class Mint,class C>
struct ArbitraryModConvolution15{
static constexpr long double PI=acosl(-1);
static void dft(vector<C>&f){
int n=f.size();
int s=__lg(n);
static vector<vector<C>>w(30);
w[0]=vector<C>(1,C(1.0,0.0));
for(int i=1;i<=s;i++){
if(w[i].size())continue;
w[i]=vector<C>(1<<i);
const long double t=2*PI/(1<<i);
for(int j=0;j<1<<i;j++)w[i][j]=(j&1)?C(cosl(j*t),sinl(j*t)):w[i-1][j>>1];
}
for(int i=0,j=1;j<n-1;j++){
for(int k=n>>1;k>(i^=k);k>>=1);
if(i>j)swap(f[i],f[j]);
}
for(int m=1;m<=s;m++){
for(int i=0;i<n;i+=1<<m){
for(int j=0;j<1<<m-1;j++){
C f0=f[i+j],f1=w[m][j]*f[i+j+(1<<m-1)];
f[i+j]=f0+f1;
f[i+j+(1<<m-1)]=f0-f1;
}
}
}
}
static void idft(vector<C>&f){
dft(f);
reverse(f.begin()+1,f.end());
long double in=1.0/f.size();
for(int i=0;i<f.size();i++)f[i]*=in;
}
static vector<Mint>convolute(vector<Mint>A,vector<Mint>B){
int n=1<<__lg(A.size()+B.size()-2)+1;
vector<C>g(n),h(n);
for(int i=0;i<A.size();i++)g[i]=C(A[i].a&~(~0<<15),A[i].a>>15);
for(int i=0;i<B.size();i++)h[i]=C(B[i].a&~(~0<<15),B[i].a>>15);
dft(g);
dft(h);
vector<C>gc=g;
reverse(gc.begin()+1,gc.end());
C I(0,1);
for(int i=0;i<n;i++){
gc[i]=conj(gc[i]);
C a=(g[i]+gc[i])*h[i]*0.5L;
C b=(g[i]-gc[i])*h[i]*I*(-0.5L);
g[i]=a;h[i]=b;
}
idft(g);
idft(h);
vector<Mint>AB(A.size()+B.size()-1);
for(int i=0;i<AB.size();i++){
Mint ll=g[i].real()+0.5;
Mint lh=g[i].imag()+0.5;
Mint hl=h[i].real()+0.5;
Mint hh=h[i].imag()+0.5;
AB[i]=(hh*(1<<15)+(lh+hl))*(1<<15)+ll;
}
return AB;
}
};
using FFT=ArbitraryModConvolution15<mint,complex<long double>>;
mint po[2222222];
signed main(){
po[0]=1;
for(int i=1;i<2222222;i++)po[i]=po[i-1]*2;
int X,Y,Z;
cin>>X>>Y>>Z;
if(X==0&&Y==0&&Z==0){
cout<<1<<endl;
return 0;
}
vector<mint>F(X+Y+1);
for(int i=0;i<=X+Y;i++){
if(i+Z<X||i+Z<Y)continue;
F[i]=mtable.binom(i+Z,X)*mtable.binom(i+Z,Y)*mtable.binom(i+Z,Z)*mtable.finv(i+Z);
if((i+Z)&1)F[i]*=-1;
}
vector<mint>U(X+Y+1);
for(int i=0;i<=X+Y;i++)U[i]=mtable.finv(i);
auto P=FFT::convolute(F,U);
mint ans=0;
for(int i=0;i<=X+Y;i++){
int k=i+Z;
mint tmp=po[k]*mtable.fact(k)*P[i];
ans+=tmp;
}
ans/=2;
if(X&1)ans*=-1;
if(Y&1)ans*=-1;
if(Z&1)ans*=-1;
cout<<ans<<endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0