結果

問題 No.940 ワープ ε=ε=ε=ε=ε=│;p>д<│
ユーザー sigma425sigma425
提出日時 2019-12-03 14:42:38
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 11,633 bytes
コンパイル時間 2,596 ms
コンパイル使用メモリ 210,532 KB
最終ジャッジ日時 2025-01-08 07:13:58
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 63 ms
510,964 KB
testcase_01 AC 63 ms
42,524 KB
testcase_02 AC 63 ms
42,528 KB
testcase_03 AC 81 ms
44,856 KB
testcase_04 AC 61 ms
42,432 KB
testcase_05 AC 70 ms
43,828 KB
testcase_06 AC 68 ms
43,164 KB
testcase_07 AC 66 ms
43,128 KB
testcase_08 AC 62 ms
42,880 KB
testcase_09 AC 65 ms
43,080 KB
testcase_10 AC 66 ms
43,128 KB
testcase_11 AC 63 ms
42,904 KB
testcase_12 AC 68 ms
43,828 KB
testcase_13 AC 65 ms
43,176 KB
testcase_14 AC 62 ms
42,744 KB
testcase_15 AC 458 ms
81,472 KB
testcase_16 AC 924 ms
120,396 KB
testcase_17 AC 4,134 ms
366,324 KB
testcase_18 AC 4,079 ms
366,304 KB
testcase_19 AC 4,106 ms
366,276 KB
testcase_20 AC 4,080 ms
366,256 KB
testcase_21 AC 1,903 ms
198,408 KB
testcase_22 AC 4,049 ms
366,164 KB
testcase_23 AC 1,989 ms
198,340 KB
testcase_24 AC 4,028 ms
366,364 KB
testcase_25 TLE -
testcase_26 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#define rep(i,n) for(int i=0;i<(int)(n);i++)
#define rep1(i,n) for(int i=1;i<=(int)(n);i++)
#define all(c) c.begin(),c.end()
#define pb push_back
#define fs first
#define sc second
#define chmin(x,y) x=min(x,y)
#define chmax(x,y) x=max(x,y)
using namespace std;
template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){
	return o<<"("<<p.fs<<","<<p.sc<<")";
}
template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){
	o<<"{";
	for(const T& v:vc) o<<v<<",";
	o<<"}";
	return o;
}
using ll = long long;
template<class T> using V = vector<T>;
template<class T> using VV = vector<vector<T>>;
constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); }

#ifdef LOCAL
#define show(x) cerr << "LINE" << __LINE__ << " : " << #x << " = " << (x) << endl
#else
#define show(x) true
#endif

template<unsigned int mod_>
struct ModInt{
	using uint = unsigned int;
	using ll = long long;
	using ull = unsigned long long;

	constexpr static uint mod = mod_;

	uint v;
	ModInt():v(0){}
	ModInt(ll _v):v(normS(_v%mod+mod)){}
	explicit operator bool() const {return v!=0;}
	static uint normS(const uint &x){return (x<mod)?x:x-mod;}		// [0 , 2*mod-1] -> [0 , mod-1]
	static ModInt make(const uint &x){ModInt m; m.v=x; return m;}
	ModInt operator+(const ModInt& b) const { return make(normS(v+b.v));}
	ModInt operator-(const ModInt& b) const { return make(normS(v+mod-b.v));}
	ModInt operator-() const { return make(normS(mod-v)); }
	ModInt operator*(const ModInt& b) const { return make((ull)v*b.v%mod);}
	ModInt operator/(const ModInt& b) const { return *this*b.inv();}
	ModInt& operator+=(const ModInt& b){ return *this=*this+b;}
	ModInt& operator-=(const ModInt& b){ return *this=*this-b;}
	ModInt& operator*=(const ModInt& b){ return *this=*this*b;}
	ModInt& operator/=(const ModInt& b){ return *this=*this/b;}
	ModInt& operator++(int){ return *this=*this+1;}
	ModInt& operator--(int){ return *this=*this-1;}
	ll extgcd(ll a,ll b,ll &x,ll &y) const{
		ll p[]={a,1,0},q[]={b,0,1};
		while(*q){
			ll t=*p/ *q;
			rep(i,3) swap(p[i]-=t*q[i],q[i]);
		}
		if(p[0]<0) rep(i,3) p[i]=-p[i];
		x=p[1],y=p[2];
		return p[0];
	}
	ModInt inv() const {
		ll x,y;
		extgcd(v,mod,x,y);
		return make(normS(x+mod));
	}
	ModInt pow(ll p) const {
		ModInt a = 1;
		ModInt x = *this;
		while(p){
			if(p&1) a *= x;
			x *= x;
			p >>= 1;
		}
		return a;
	}
	bool operator==(const ModInt& b) const { return v==b.v;}
	bool operator!=(const ModInt& b) const { return v!=b.v;}
	friend istream& operator>>(istream &o,ModInt& x){
		ll tmp;
		o>>tmp;
		x=ModInt(tmp);
		return o;
	}
	friend ostream& operator<<(ostream &o,const ModInt& x){ return o<<x.v;}
};
using mint = ModInt<1000000007>;


int bsr(int x) { return 31 - __builtin_clz(x); }
using D = double;
const D pi = acos(-1);
using Pc = complex<D>;

void fft(bool type, vector<Pc> &c){	//multiply : false -> mult -> true
	static vector<Pc> buf[30];
	int N = c.size();
	int s = bsr(N);
	assert(1<<s == N);
	if(buf[s].empty()){
		buf[s]=vector<Pc>(N);
		rep(i,N) buf[s][i] = polar<D>(1,i*2*pi/N);
	}
	vector<Pc> a(N),b(N);
	copy(begin(c),end(c),begin(a));
	rep1(i,s){
		int W = 1<<(s-i);
		for(int y=0;y<N/2;y+=W){
			Pc now = buf[s][y];
			if(type) now = conj(now);
			rep(x,W){
				auto l =       a[y<<1 | x];
				auto r = now * a[y<<1 | x | W];
				b[y | x]        = l+r;
				b[y | x | N>>1] = l-r;
			}
		}
		swap(a,b);
	}
	copy(begin(a),end(a),begin(c));
}
template<class Mint>
vector<Mint> multiply_fft(const vector<Mint>& x,const vector<Mint>& y){
	if(x.empty() || y.empty()) return {};
	const int B = 15;
	const int K = 2;
	int S = x.size()+y.size()-1;
	int N = 1; while(N<S) N*=2;
	vector<Pc> a[K],b[K];
	rep(t,K){
		a[t] = vector<Pc>(N);
		b[t] = vector<Pc>(N);
		rep(i,x.size()) a[t][i] = Pc( (x[i].v >> (t*B)) & ((1<<B)-1) , 0 );
		rep(i,y.size()) b[t][i] = Pc( (y[i].v >> (t*B)) & ((1<<B)-1) , 0 );
		fft(false,a[t]);
		fft(false,b[t]);
	}
	vector<Mint> z(S);
	vector<Pc> c(N);
	Mint base = 1;
	rep(t,K+K-1){
		fill_n(begin(c),N,Pc(0,0));
		rep(xt,K){
			int yt = t-xt;
			if(0<=yt && yt<K){
				rep(i,N) c[i] += a[xt][i] * b[yt][i];
			}
		}
		fft(true,c);
		rep(i,S){
			c[i] *= 1.0/N;
			z[i] += Mint(ll(round(c[i].real()))) * base;
		}
		base *= 1<<B;
	}
	return z;
}
template<class D>
struct Poly{
	vector<D> v;
	int size() const{ return v.size();}	//deg+1
	Poly(){}
	Poly(vector<D> _v) : v(_v){shrink();}

	Poly& shrink(){
		while(!v.empty()&&v.back()==D(0)) v.pop_back();
		return *this;
	}
	D at(int i) const{
		return (i<size())?v[i]:D(0);
	}
	void set(int i,const D& x){		//v[i] := x
		if(i>=size() && !x) return;
		while(i>=size()) v.push_back(D(0));
		v[i]=x;
		shrink();
		return;
	}
	D operator()(D x) const {
		D res = 0;
		int n = size();
		D a = 1;
		rep(i,n){
			res += a*v[i];
			a *= x;
		}
		return res;
	}

	Poly operator+(const Poly &r) const{
		int N=max(size(),r.size());
		vector<D> ret(N);
		rep(i,N) ret[i]=at(i)+r.at(i);
		return Poly(ret);
	}
	Poly operator-(const Poly &r) const{
		int N=max(size(),r.size());
		vector<D> ret(N);
		rep(i,N) ret[i]=at(i)-r.at(i);
		return Poly(ret);
	}
	Poly operator-() const{
		int N=size();
		vector<D> ret(N);
		rep(i,N) ret[i] = -at(i);
		return Poly(ret);
	}
	Poly operator*(const Poly &r) const{
		if(size()==0||r.size()==0) return Poly();
		return mul_fft(r);									// FFT or NTT ?
	}
	Poly operator*(const D &r) const{
		int N=size();
		vector<D> ret(N);
		rep(i,N) ret[i]=v[i]*r;
		return Poly(ret);
	}
	Poly operator/(const D &r) const{
		return *this * r.inv();
	}
	Poly operator/(const Poly &y) const{
		return div_fast(y);
	}
	Poly operator%(const Poly &y) const{
		return rem_fast(y);
//		return rem_naive(y);
	}
	Poly operator<<(const int &n) const{	// *=x^n
		assert(n>=0);
		int N=size();
		vector<D> ret(N+n);
		rep(i,N) ret[i+n]=v[i];
		return Poly(ret);
	}
	Poly operator>>(const int &n) const{	// /=x^n
		assert(n>=0);
		int N=size();
		if(N<=n) return Poly();
		vector<D> ret(N-n);
		rep(i,N-n) ret[i]=v[i+n];
		return Poly(ret);
	}
	bool operator==(const Poly &y) const{
		return v==y.v;
	}
	bool operator!=(const Poly &y) const{
		return v!=y.v;
	}

	Poly& operator+=(const Poly &r) {return *this = *this+r;}
	Poly& operator-=(const Poly &r) {return *this = *this-r;}
	Poly& operator*=(const Poly &r) {return *this = *this*r;}
	Poly& operator*=(const D &r) {return *this = *this*r;}
	Poly& operator/=(const Poly &r) {return *this = *this/r;}
	Poly& operator/=(const D &r) {return *this = *this/r;}
	Poly& operator%=(const Poly &y) {return *this = *this%y;}
	Poly& operator<<=(const int &n) {return *this = *this<<n;}
	Poly& operator>>=(const int &n) {return *this = *this>>n;}

	Poly diff() const {
		int n = size();
		if(n == 0) return Poly();
		V<D> u(n-1);
		rep(i,n-1) u[i] = at(i+1) * (i+1);
		return Poly(u);
	}
	Poly intg() const {
		int n = size();
		V<D> u(n+1);
		rep(i,n) u[i+1] = at(i) / (i+1);
		return Poly(u);
	}

	Poly pow(long long n, int L) const {		// f^n, ignoring x^L,x^{L+1},..
		Poly a({1});
		Poly x = *this;
		while(n){
			if(n&1){
				a *= x;
				a = a.strip(L);
			}
			x *= x;
			x = x.strip(L);
			n /= 2;
		}
		return a;
	}

	/*
		[x^0~n] exp(f) = 1 + f + f^2 / 2 + f^3 / 6 + ..
		f(0) should be 0

		O((N+n) log n)	(N = size())
		NTT, -O3
		- N = n = 100000 : 200 [ms]
		- N = n = 200000 : 400 [ms]
		- N = n = 500000 : 1000 [ms]
	*/
	Poly exp(int n) const {
		assert(at(0) == 0);
		Poly f({1}), g({1});
		for(int i=1;i<=n;i*=2){
			g = (g*2 - f*g*g).strip(i);
			Poly q = (this->diff()).strip(i-1);
			Poly w = (q + g * (f.diff() - f*q)) .strip(2*i-1);
			f = (f + f * (*this - w.intg()).strip(2*i)) .strip(2*i);
		}
		return f.strip(n+1);
	}

	/*
		[x^0~n] log(f) = log(1-(1-f)) = - (1-f) - (1-f)^2 / 2 - (1-f)^3 / 3 - ...
		f(0) should be 1
		O(n log n)

		NTT, -O3
		1e5 : 140 [ms]
		2e5 : 296 [ms]
		5e5 : 640 [ms]
		1e6 : 1343 [ms]
	*/
	Poly log(int n) const {
		assert(at(0) == 1);
		auto f = strip(n+1);
		return (f.diff() * f.inv(n)).strip(n).intg();
	}

	/*
		[x^0~n] sqrt(f)
		f(0) should be 1
		いや平方剰余なら何でもいいと思うけど探すのがめんどくさいので
		+- 2通りだけど 定数項が 1 の方
		O(n log n)

		NTT, -O3
		1e5 : 234 [ms]
		2e5 : 484 [ms]
		5e5 : 1000 [ms]
		1e6 : 2109 [ms]
	*/
	Poly sqrt(int n) const {
		assert(at(0) == 1);
		Poly f = strip(n+1);
		Poly g({1});
		for(int i=1; i<=n; i*=2){
			g = (g + f.strip(2*i)*g.inv(2*i-1)) / 2;
		}
		return g.strip(n+1);
	}

	/*
		[x^0~n] f^-1 = (1-(1-f))^-1 = (1-f) + (1-f)^2 + ...
		f * f.inv(n) = 1 + x^n * poly
		f(0) should be non0
		O(n log n)
	*/
	Poly inv(int n) const {
		assert(at(0) != 0);
		Poly f = strip(n+1);
		Poly g({at(0).inv()});
		for(int i=1; i<=n; i*=2){		//need to strip!!
			g *= (Poly({2}) - f.strip(2*i)*g).strip(2*i);
		}
		return g.strip(n+1);
	}	

	Poly exp_naive(int n) const {
		assert(at(0) == 0);
		Poly res;
		Poly fk({1});
		rep(k,n+1){
			res += fk;
			fk *= *this;
			fk = fk.strip(n+1) / (k+1);
		}
		return res;
	}
	Poly log_naive(int n) const {
		assert(at(0) == 1);
		Poly res;
		Poly g({1});
		rep1(k,n){
			g *= (Poly({1}) - *this);
			g = g.strip(n+1);
			res -= g / k;
		}
		return res;
	}


	Poly mul_naive(const Poly &r) const{
		int N=size(),M=r.size();
		vector<D> ret(N+M-1);
		rep(i,N) rep(j,M) ret[i+j]+=at(i)*r.at(j);
		return Poly(ret);
	}
	Poly mul_ntt(const Poly &r) const{
		return Poly(multiply_ntt(v,r.v));
	}
	Poly mul_fft(const Poly &r) const{
		return Poly(multiply_fft(v,r.v));
	}

	Poly div_fast_with_inv(const Poly &inv, int B) const {
		return (*this * inv)>>(B-1);
	}
	Poly div_fast(const Poly &y) const{
		if(size()<y.size()) return Poly();
		int n = size();
		return div_fast_with_inv(y.inv_div(n-1),n);
	}
	Poly rem_naive(const Poly &y) const{
		Poly x = *this;
		while(y.size()<=x.size()){
			int N=x.size(),M=y.size();
			D coef = x.v[N-1]/y.v[M-1];
			x -= (y<<(N-M))*coef;
		}
		return x;
	}
	Poly rem_fast(const Poly &y) const{
		return *this - y * div_fast(y);
	}
	Poly strip(int n) const {	//ignore x^n , x^n+1,...
		vector<D> res = v;
		res.resize(min(n,size()));
		return Poly(res);
	}
	Poly rev(int n = -1) const {	//ignore x^n ~  ->  return x^(n-1) * f(1/x)
		vector<D> res = v;
		if(n!=-1) res.resize(n);
		reverse(all(res));
		return Poly(res);
	}

	/*
		f.inv_div(n) = x^n / f
		f should be non0
		O((N+n) log n)

		for division
	*/
	Poly inv_div(int n) const {
		n++;
		int d = size() - 1;
		assert(d != -1);
		if(n < d) return Poly();
		Poly a = rev();
		Poly g({at(d).inv()});
		for(int i=1; i+d<=n; i*=2){		//need to strip!!
			g *= (Poly({2})-a.strip(2*i)*g).strip(2*i);
		}
		return g.rev(n-d);
	}


	friend ostream& operator<<(ostream &o,const Poly& x){
		if(x.size()==0) return o<<0;
		rep(i,x.size()) if(x.v[i]!=D(0)){
			o<<x.v[i]<<"x^"<<i;
			if(i!=x.size()-1) o<<" + ";
		}
		return o;
	}
};

V<mint> fact,ifact;
mint Choose(int a,int b){
	if(b<0 || a<b) return 0;
	return fact[a] * ifact[b] * ifact[a-b];
}
void InitFact(int N){
	fact.resize(N);
	ifact.resize(N);
	fact[0] = 1;
	rep1(i,N-1) fact[i] = fact[i-1] * i;
	ifact[N-1] = fact[N-1].inv();
	for(int i=N-2;i>=0;i--) ifact[i] = ifact[i+1] * (i+1);
}

int main(){
	cin.tie(0);
	ios::sync_with_stdio(false);		//DON'T USE scanf/printf/puts !!
	cout << fixed << setprecision(20);
	InitFact(5000010);
	int X,Y,Z; cin >> X >> Y >> Z;
	Poly<mint> y({1,-2,1});
	Poly<mint> f({1});
	while((int)f.size() < X+Y+Z+10){
		f *= (y + Poly<mint>({1}));
		y *= y;
	}
	show(f.size());

	mint ans = 0;
	if(X+Y+Z == 0){
		cout << 1 << endl;
		return 0;
	}
	rep1(k,f.size()){
		ans += Choose(X+k-1,k-1) * Choose(Y+k-1,k-1) * Choose(Z+k-1,k-1) * f.at(k-1);
	}
	cout << ans << endl;
}
0