結果
問題 | No.940 ワープ ε=ε=ε=ε=ε=│;p>д<│ |
ユーザー | sigma425 |
提出日時 | 2019-12-03 14:42:38 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 11,633 bytes |
コンパイル時間 | 2,408 ms |
コンパイル使用メモリ | 217,016 KB |
実行使用メモリ | 475,572 KB |
最終ジャッジ日時 | 2024-05-06 08:14:44 |
合計ジャッジ時間 | 39,522 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 59 ms
42,512 KB |
testcase_01 | AC | 58 ms
42,240 KB |
testcase_02 | AC | 58 ms
42,496 KB |
testcase_03 | AC | 74 ms
44,856 KB |
testcase_04 | AC | 60 ms
42,368 KB |
testcase_05 | AC | 66 ms
43,700 KB |
testcase_06 | AC | 63 ms
43,008 KB |
testcase_07 | AC | 62 ms
42,880 KB |
testcase_08 | AC | 61 ms
42,624 KB |
testcase_09 | AC | 62 ms
43,008 KB |
testcase_10 | AC | 62 ms
42,880 KB |
testcase_11 | AC | 61 ms
42,752 KB |
testcase_12 | AC | 67 ms
43,696 KB |
testcase_13 | AC | 62 ms
43,044 KB |
testcase_14 | AC | 60 ms
42,592 KB |
testcase_15 | AC | 429 ms
81,416 KB |
testcase_16 | AC | 835 ms
120,412 KB |
testcase_17 | AC | 4,054 ms
366,240 KB |
testcase_18 | AC | 3,957 ms
366,368 KB |
testcase_19 | AC | 4,030 ms
366,372 KB |
testcase_20 | AC | 4,034 ms
366,248 KB |
testcase_21 | AC | 1,809 ms
198,292 KB |
testcase_22 | AC | 4,002 ms
366,240 KB |
testcase_23 | AC | 1,787 ms
198,168 KB |
testcase_24 | AC | 4,000 ms
366,248 KB |
testcase_25 | TLE | - |
testcase_26 | -- | - |
ソースコード
#include <bits/stdc++.h> #define rep(i,n) for(int i=0;i<(int)(n);i++) #define rep1(i,n) for(int i=1;i<=(int)(n);i++) #define all(c) c.begin(),c.end() #define pb push_back #define fs first #define sc second #define chmin(x,y) x=min(x,y) #define chmax(x,y) x=max(x,y) using namespace std; template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){ return o<<"("<<p.fs<<","<<p.sc<<")"; } template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){ o<<"{"; for(const T& v:vc) o<<v<<","; o<<"}"; return o; } using ll = long long; template<class T> using V = vector<T>; template<class T> using VV = vector<vector<T>>; constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); } #ifdef LOCAL #define show(x) cerr << "LINE" << __LINE__ << " : " << #x << " = " << (x) << endl #else #define show(x) true #endif template<unsigned int mod_> struct ModInt{ using uint = unsigned int; using ll = long long; using ull = unsigned long long; constexpr static uint mod = mod_; uint v; ModInt():v(0){} ModInt(ll _v):v(normS(_v%mod+mod)){} explicit operator bool() const {return v!=0;} static uint normS(const uint &x){return (x<mod)?x:x-mod;} // [0 , 2*mod-1] -> [0 , mod-1] static ModInt make(const uint &x){ModInt m; m.v=x; return m;} ModInt operator+(const ModInt& b) const { return make(normS(v+b.v));} ModInt operator-(const ModInt& b) const { return make(normS(v+mod-b.v));} ModInt operator-() const { return make(normS(mod-v)); } ModInt operator*(const ModInt& b) const { return make((ull)v*b.v%mod);} ModInt operator/(const ModInt& b) const { return *this*b.inv();} ModInt& operator+=(const ModInt& b){ return *this=*this+b;} ModInt& operator-=(const ModInt& b){ return *this=*this-b;} ModInt& operator*=(const ModInt& b){ return *this=*this*b;} ModInt& operator/=(const ModInt& b){ return *this=*this/b;} ModInt& operator++(int){ return *this=*this+1;} ModInt& operator--(int){ return *this=*this-1;} ll extgcd(ll a,ll b,ll &x,ll &y) const{ ll p[]={a,1,0},q[]={b,0,1}; while(*q){ ll t=*p/ *q; rep(i,3) swap(p[i]-=t*q[i],q[i]); } if(p[0]<0) rep(i,3) p[i]=-p[i]; x=p[1],y=p[2]; return p[0]; } ModInt inv() const { ll x,y; extgcd(v,mod,x,y); return make(normS(x+mod)); } ModInt pow(ll p) const { ModInt a = 1; ModInt x = *this; while(p){ if(p&1) a *= x; x *= x; p >>= 1; } return a; } bool operator==(const ModInt& b) const { return v==b.v;} bool operator!=(const ModInt& b) const { return v!=b.v;} friend istream& operator>>(istream &o,ModInt& x){ ll tmp; o>>tmp; x=ModInt(tmp); return o; } friend ostream& operator<<(ostream &o,const ModInt& x){ return o<<x.v;} }; using mint = ModInt<1000000007>; int bsr(int x) { return 31 - __builtin_clz(x); } using D = double; const D pi = acos(-1); using Pc = complex<D>; void fft(bool type, vector<Pc> &c){ //multiply : false -> mult -> true static vector<Pc> buf[30]; int N = c.size(); int s = bsr(N); assert(1<<s == N); if(buf[s].empty()){ buf[s]=vector<Pc>(N); rep(i,N) buf[s][i] = polar<D>(1,i*2*pi/N); } vector<Pc> a(N),b(N); copy(begin(c),end(c),begin(a)); rep1(i,s){ int W = 1<<(s-i); for(int y=0;y<N/2;y+=W){ Pc now = buf[s][y]; if(type) now = conj(now); rep(x,W){ auto l = a[y<<1 | x]; auto r = now * a[y<<1 | x | W]; b[y | x] = l+r; b[y | x | N>>1] = l-r; } } swap(a,b); } copy(begin(a),end(a),begin(c)); } template<class Mint> vector<Mint> multiply_fft(const vector<Mint>& x,const vector<Mint>& y){ if(x.empty() || y.empty()) return {}; const int B = 15; const int K = 2; int S = x.size()+y.size()-1; int N = 1; while(N<S) N*=2; vector<Pc> a[K],b[K]; rep(t,K){ a[t] = vector<Pc>(N); b[t] = vector<Pc>(N); rep(i,x.size()) a[t][i] = Pc( (x[i].v >> (t*B)) & ((1<<B)-1) , 0 ); rep(i,y.size()) b[t][i] = Pc( (y[i].v >> (t*B)) & ((1<<B)-1) , 0 ); fft(false,a[t]); fft(false,b[t]); } vector<Mint> z(S); vector<Pc> c(N); Mint base = 1; rep(t,K+K-1){ fill_n(begin(c),N,Pc(0,0)); rep(xt,K){ int yt = t-xt; if(0<=yt && yt<K){ rep(i,N) c[i] += a[xt][i] * b[yt][i]; } } fft(true,c); rep(i,S){ c[i] *= 1.0/N; z[i] += Mint(ll(round(c[i].real()))) * base; } base *= 1<<B; } return z; } template<class D> struct Poly{ vector<D> v; int size() const{ return v.size();} //deg+1 Poly(){} Poly(vector<D> _v) : v(_v){shrink();} Poly& shrink(){ while(!v.empty()&&v.back()==D(0)) v.pop_back(); return *this; } D at(int i) const{ return (i<size())?v[i]:D(0); } void set(int i,const D& x){ //v[i] := x if(i>=size() && !x) return; while(i>=size()) v.push_back(D(0)); v[i]=x; shrink(); return; } D operator()(D x) const { D res = 0; int n = size(); D a = 1; rep(i,n){ res += a*v[i]; a *= x; } return res; } Poly operator+(const Poly &r) const{ int N=max(size(),r.size()); vector<D> ret(N); rep(i,N) ret[i]=at(i)+r.at(i); return Poly(ret); } Poly operator-(const Poly &r) const{ int N=max(size(),r.size()); vector<D> ret(N); rep(i,N) ret[i]=at(i)-r.at(i); return Poly(ret); } Poly operator-() const{ int N=size(); vector<D> ret(N); rep(i,N) ret[i] = -at(i); return Poly(ret); } Poly operator*(const Poly &r) const{ if(size()==0||r.size()==0) return Poly(); return mul_fft(r); // FFT or NTT ? } Poly operator*(const D &r) const{ int N=size(); vector<D> ret(N); rep(i,N) ret[i]=v[i]*r; return Poly(ret); } Poly operator/(const D &r) const{ return *this * r.inv(); } Poly operator/(const Poly &y) const{ return div_fast(y); } Poly operator%(const Poly &y) const{ return rem_fast(y); // return rem_naive(y); } Poly operator<<(const int &n) const{ // *=x^n assert(n>=0); int N=size(); vector<D> ret(N+n); rep(i,N) ret[i+n]=v[i]; return Poly(ret); } Poly operator>>(const int &n) const{ // /=x^n assert(n>=0); int N=size(); if(N<=n) return Poly(); vector<D> ret(N-n); rep(i,N-n) ret[i]=v[i+n]; return Poly(ret); } bool operator==(const Poly &y) const{ return v==y.v; } bool operator!=(const Poly &y) const{ return v!=y.v; } Poly& operator+=(const Poly &r) {return *this = *this+r;} Poly& operator-=(const Poly &r) {return *this = *this-r;} Poly& operator*=(const Poly &r) {return *this = *this*r;} Poly& operator*=(const D &r) {return *this = *this*r;} Poly& operator/=(const Poly &r) {return *this = *this/r;} Poly& operator/=(const D &r) {return *this = *this/r;} Poly& operator%=(const Poly &y) {return *this = *this%y;} Poly& operator<<=(const int &n) {return *this = *this<<n;} Poly& operator>>=(const int &n) {return *this = *this>>n;} Poly diff() const { int n = size(); if(n == 0) return Poly(); V<D> u(n-1); rep(i,n-1) u[i] = at(i+1) * (i+1); return Poly(u); } Poly intg() const { int n = size(); V<D> u(n+1); rep(i,n) u[i+1] = at(i) / (i+1); return Poly(u); } Poly pow(long long n, int L) const { // f^n, ignoring x^L,x^{L+1},.. Poly a({1}); Poly x = *this; while(n){ if(n&1){ a *= x; a = a.strip(L); } x *= x; x = x.strip(L); n /= 2; } return a; } /* [x^0~n] exp(f) = 1 + f + f^2 / 2 + f^3 / 6 + .. f(0) should be 0 O((N+n) log n) (N = size()) NTT, -O3 - N = n = 100000 : 200 [ms] - N = n = 200000 : 400 [ms] - N = n = 500000 : 1000 [ms] */ Poly exp(int n) const { assert(at(0) == 0); Poly f({1}), g({1}); for(int i=1;i<=n;i*=2){ g = (g*2 - f*g*g).strip(i); Poly q = (this->diff()).strip(i-1); Poly w = (q + g * (f.diff() - f*q)) .strip(2*i-1); f = (f + f * (*this - w.intg()).strip(2*i)) .strip(2*i); } return f.strip(n+1); } /* [x^0~n] log(f) = log(1-(1-f)) = - (1-f) - (1-f)^2 / 2 - (1-f)^3 / 3 - ... f(0) should be 1 O(n log n) NTT, -O3 1e5 : 140 [ms] 2e5 : 296 [ms] 5e5 : 640 [ms] 1e6 : 1343 [ms] */ Poly log(int n) const { assert(at(0) == 1); auto f = strip(n+1); return (f.diff() * f.inv(n)).strip(n).intg(); } /* [x^0~n] sqrt(f) f(0) should be 1 いや平方剰余なら何でもいいと思うけど探すのがめんどくさいので +- 2通りだけど 定数項が 1 の方 O(n log n) NTT, -O3 1e5 : 234 [ms] 2e5 : 484 [ms] 5e5 : 1000 [ms] 1e6 : 2109 [ms] */ Poly sqrt(int n) const { assert(at(0) == 1); Poly f = strip(n+1); Poly g({1}); for(int i=1; i<=n; i*=2){ g = (g + f.strip(2*i)*g.inv(2*i-1)) / 2; } return g.strip(n+1); } /* [x^0~n] f^-1 = (1-(1-f))^-1 = (1-f) + (1-f)^2 + ... f * f.inv(n) = 1 + x^n * poly f(0) should be non0 O(n log n) */ Poly inv(int n) const { assert(at(0) != 0); Poly f = strip(n+1); Poly g({at(0).inv()}); for(int i=1; i<=n; i*=2){ //need to strip!! g *= (Poly({2}) - f.strip(2*i)*g).strip(2*i); } return g.strip(n+1); } Poly exp_naive(int n) const { assert(at(0) == 0); Poly res; Poly fk({1}); rep(k,n+1){ res += fk; fk *= *this; fk = fk.strip(n+1) / (k+1); } return res; } Poly log_naive(int n) const { assert(at(0) == 1); Poly res; Poly g({1}); rep1(k,n){ g *= (Poly({1}) - *this); g = g.strip(n+1); res -= g / k; } return res; } Poly mul_naive(const Poly &r) const{ int N=size(),M=r.size(); vector<D> ret(N+M-1); rep(i,N) rep(j,M) ret[i+j]+=at(i)*r.at(j); return Poly(ret); } Poly mul_ntt(const Poly &r) const{ return Poly(multiply_ntt(v,r.v)); } Poly mul_fft(const Poly &r) const{ return Poly(multiply_fft(v,r.v)); } Poly div_fast_with_inv(const Poly &inv, int B) const { return (*this * inv)>>(B-1); } Poly div_fast(const Poly &y) const{ if(size()<y.size()) return Poly(); int n = size(); return div_fast_with_inv(y.inv_div(n-1),n); } Poly rem_naive(const Poly &y) const{ Poly x = *this; while(y.size()<=x.size()){ int N=x.size(),M=y.size(); D coef = x.v[N-1]/y.v[M-1]; x -= (y<<(N-M))*coef; } return x; } Poly rem_fast(const Poly &y) const{ return *this - y * div_fast(y); } Poly strip(int n) const { //ignore x^n , x^n+1,... vector<D> res = v; res.resize(min(n,size())); return Poly(res); } Poly rev(int n = -1) const { //ignore x^n ~ -> return x^(n-1) * f(1/x) vector<D> res = v; if(n!=-1) res.resize(n); reverse(all(res)); return Poly(res); } /* f.inv_div(n) = x^n / f f should be non0 O((N+n) log n) for division */ Poly inv_div(int n) const { n++; int d = size() - 1; assert(d != -1); if(n < d) return Poly(); Poly a = rev(); Poly g({at(d).inv()}); for(int i=1; i+d<=n; i*=2){ //need to strip!! g *= (Poly({2})-a.strip(2*i)*g).strip(2*i); } return g.rev(n-d); } friend ostream& operator<<(ostream &o,const Poly& x){ if(x.size()==0) return o<<0; rep(i,x.size()) if(x.v[i]!=D(0)){ o<<x.v[i]<<"x^"<<i; if(i!=x.size()-1) o<<" + "; } return o; } }; V<mint> fact,ifact; mint Choose(int a,int b){ if(b<0 || a<b) return 0; return fact[a] * ifact[b] * ifact[a-b]; } void InitFact(int N){ fact.resize(N); ifact.resize(N); fact[0] = 1; rep1(i,N-1) fact[i] = fact[i-1] * i; ifact[N-1] = fact[N-1].inv(); for(int i=N-2;i>=0;i--) ifact[i] = ifact[i+1] * (i+1); } int main(){ cin.tie(0); ios::sync_with_stdio(false); //DON'T USE scanf/printf/puts !! cout << fixed << setprecision(20); InitFact(5000010); int X,Y,Z; cin >> X >> Y >> Z; Poly<mint> y({1,-2,1}); Poly<mint> f({1}); while((int)f.size() < X+Y+Z+10){ f *= (y + Poly<mint>({1})); y *= y; } show(f.size()); mint ans = 0; if(X+Y+Z == 0){ cout << 1 << endl; return 0; } rep1(k,f.size()){ ans += Choose(X+k-1,k-1) * Choose(Y+k-1,k-1) * Choose(Z+k-1,k-1) * f.at(k-1); } cout << ans << endl; }