結果
| 問題 |
No.940 ワープ ε=ε=ε=ε=ε=│;p>д<│
|
| ユーザー |
FF256grhy
|
| 提出日時 | 2019-12-03 23:29:31 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 4,732 bytes |
| コンパイル時間 | 1,779 ms |
| コンパイル使用メモリ | 173,732 KB |
| 実行使用メモリ | 47,508 KB |
| 最終ジャッジ日時 | 2024-11-28 13:40:45 |
| 合計ジャッジ時間 | 75,234 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 10 TLE * 12 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
typedef long long signed int LL;
typedef long long unsigned int LU;
#define incID(i, l, r) for(LL i = (l) ; i < (r); ++i)
#define incII(i, l, r) for(LL i = (l) ; i <= (r); ++i)
#define decID(i, l, r) for(LL i = (r) - 1; i >= (l); --i)
#define decII(i, l, r) for(LL i = (r) ; i >= (l); --i)
#define inc(i, n) incID(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec(i, n) decID(i, 0, n)
#define dec1(i, n) decII(i, 1, n)
#define inID(v, l, r) ((l) <= (v) && (v) < (r))
#define inII(v, l, r) ((l) <= (v) && (v) <= (r))
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define FI first
#define SE second
#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
template<typename T> bool setmin (T & a, T b) { if(b < a) { a = b; return true; } else { return false; } }
template<typename T> bool setmax (T & a, T b) { if(b > a) { a = b; return true; } else { return false; } }
template<typename T> bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } }
template<typename T> bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } }
LL mo(LL a, LL b) { assert(b > 0); a %= b; if(a < 0) { a += b; } return a; }
LL fl(LL a, LL b) { assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); }
LL ce(LL a, LL b) { assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); }
template<typename T> T gcd(T a, T b) { return (b == 0 ? a : gcd(b, a % b)); }
template<typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
#define bit(b, i) (((b) >> (i)) & 1)
#define BC __builtin_popcountll
#define SC static_cast
#define SI(v) SC<int>(v.size())
#define SL(v) SC<LL >(v.size())
#define RF(e, v) for(auto & e: v)
#define ef else if
#define UR assert(false)
// ---- ----
template<LL M> class ModInt {
private:
LL v;
pair<LL, LL> ext_gcd(LL a, LL b) {
if(b == 0) { assert(a == 1); return { 1, 0 }; }
auto p = ext_gcd(b, a % b);
return { p.SE, p.FI - (a / b) * p.SE };
}
public:
ModInt(LL vv = 0) { v = vv; if(abs(v) >= M) { v %= M; } if(v < 0) { v += M; } }
LL get_v() { return v; }
ModInt inv() { return ext_gcd(M, v).SE; }
ModInt exp(LL b) {
ModInt p = 1, a = v; if(b < 0) { a = a.inv(); b = -b; }
while(b) { if(b & 1) { p *= a; } a *= a; b >>= 1; }
return p;
}
friend bool operator< (ModInt a, ModInt b) { return (a.v < b.v); }
friend bool operator> (ModInt a, ModInt b) { return (a.v > b.v); }
friend bool operator<=(ModInt a, ModInt b) { return (a.v <= b.v); }
friend bool operator>=(ModInt a, ModInt b) { return (a.v >= b.v); }
friend bool operator==(ModInt a, ModInt b) { return (a.v == b.v); }
friend bool operator!=(ModInt a, ModInt b) { return (a.v != b.v); }
friend ModInt operator+ (ModInt a ) { return ModInt(+a.v); }
friend ModInt operator- (ModInt a ) { return ModInt(-a.v); }
friend ModInt operator+ (ModInt a, ModInt b) { return ModInt(a.v + b.v); }
friend ModInt operator- (ModInt a, ModInt b) { return ModInt(a.v - b.v); }
friend ModInt operator* (ModInt a, ModInt b) { return ModInt(a.v * b.v); }
friend ModInt operator/ (ModInt a, ModInt b) { return a * b.inv(); }
friend ModInt operator^ (ModInt a, LL b) { return a.exp(b); }
friend ModInt & operator+=(ModInt & a, ModInt b) { return (a = a + b); }
friend ModInt & operator-=(ModInt & a, ModInt b) { return (a = a - b); }
friend ModInt & operator*=(ModInt & a, ModInt b) { return (a = a * b); }
friend ModInt & operator/=(ModInt & a, ModInt b) { return (a = a / b); }
friend ModInt & operator^=(ModInt & a, LL b) { return (a = a ^ b); }
friend istream & operator>>(istream & s, ModInt & b) { s >> b.v; b = ModInt(b.v); return s; }
friend ostream & operator<<(ostream & s, ModInt b) { return (s << b.v); }
};
// ----
using MI = ModInt< 1'000'000'007 >;
int main() {
LL x, y, z;
cin >> x >> y >> z;
LL s = x + y + z;
int L = 2 * s + 1;
vector<MI> f(L), r(L);
inc(i, L) { f[i] = (i == 0 ? 1 : f[i - 1] * i); }
dec(i, L) { r[i] = (i == L - 1 ? f.back().inv() : r[i + 1] * (i + 1)); }
auto C = [&](LL a, LL b) -> MI { return f[a] * r[b] * r[a - b]; };
auto D = [&](LL a, LL b) -> MI { return ((a + b) % 2 == 0 ? +1 : -1) * C(a, b); };
auto H = [&](LL a, LL b) -> MI {
if(a == 0) { return (b == 0 ? 1 : 0); }
return C(a + b - 1, b);
};
MI ans = 0;
incII(m, 0, s) {
MI c = 0;
incII(n, m, s) { c += D(n, m); } // さっぱりわからないので O((X+Y+Z)^2) 解法を記念サブミットします
ans += c * H(m, x) * H(m, y) * H(m, z);
}
cout << ans << endl;
return 0;
}
FF256grhy