結果
問題 | No.945 YKC饅頭 |
ユーザー | jell |
提出日時 | 2019-12-08 20:30:19 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 15,783 bytes |
コンパイル時間 | 1,285 ms |
コンパイル使用メモリ | 122,292 KB |
最終ジャッジ日時 | 2024-11-14 21:56:09 |
合計ジャッジ時間 | 2,601 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp:153:56: error: narrowing conversion of '-1' from 'int' to 'long unsigned int' [-Wnarrowing] 153 | template <class tuple_t> struct tupleis<tuple_t, ~0> { static istream &apply(istream &is, tuple_t &t) { return is; } }; | ^ main.cpp:392:1: warning: ISO C++ forbids declaration of 'main' with no type [-Wreturn-type] 392 | main() | ^~~~
ソースコード
#ifdef LOCAL #define _GLIBCXX_DEBUG #define __clock__ #else #pragma GCC optimize("Ofast") // #define NDEBUG #endif // #define __buffer_check__ #define __precision__ 10 #define iostream_untie true #define debug_stream std::cerr #include <algorithm> #include <bitset> #include <cassert> #include <chrono> #include <complex> #include <cstring> #include <deque> #include <functional> #include <iomanip> #include <iostream> #include <list> #include <map> #include <queue> #include <random> #include <set> #include <stack> #include <unordered_map> #include <unordered_set> #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) #define odd(n) ((n) & 1) #define even(n) (not __odd(n)) #define __popcount(n) __builtin_popcountll(n) #define __clz32(n) __builtin_clz(n) #define __clz64(n) __builtin_clzll(n) #define __ctz32(n) __builtin_ctz(n) #define __ctz64(n) __builtin_ctzll(n) using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t; using pii = std::pair<i32, i32>; using pll = std::pair<i64, i64>; template <class T> using heap = std::priority_queue<T>; template <class T> using rheap = std::priority_queue<T, std::vector<T>, std::greater<T>>; template <class T> using hashset = std::unordered_set<T>; template <class Key, class Value> using hashmap = std::unordered_map<Key, Value>; namespace setting { using namespace std::chrono; system_clock::time_point start_time, end_time; long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); } void print_elapsed_time() { debug_stream << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n"; } void buffer_check() { char bufc; if(std::cin >> bufc) debug_stream << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; } struct setupper { setupper() { if(iostream_untie) std::ios::sync_with_stdio(false), std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(__precision__); #ifdef stderr_path if(freopen(stderr_path, "a", stderr)) { std::cerr << std::fixed << std::setprecision(__precision__); } #endif #ifdef stdout_path if(not freopen(stdout_path, "w", stdout)) { freopen("CON", "w", stdout); debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdout file.\n"; } std::cout << ""; #endif #ifdef stdin_path if(not freopen(stdin_path, "r", stdin)) { freopen("CON", "r", stdin); debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdin file.\n"; } #endif #ifdef LOCAL debug_stream << "----- stderr at LOCAL -----\n\n"; atexit(print_elapsed_time); #endif #ifdef __buffer_check__ atexit(buffer_check); #endif #if defined(__clock__) || defined(LOCAL) start_time = system_clock::now(); #endif } } __setupper; // struct setupper } // namespace setting #ifdef __clock__ class { std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln; std::string built_func, last_func; bool is_built = false; public: void build(int crt_ln, const std::string &crt_func) { is_built = true, last_pt = built_pt = std::chrono::system_clock::now(), last_ln = built_ln = crt_ln, last_func = built_func = crt_func; } void set(int crt_ln, const std::string &crt_func) { if(is_built) last_pt = std::chrono::system_clock::now(), last_ln = crt_ln, last_func = crt_func; else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n"; } void get(int crt_ln, const std::string &crt_func) { if(is_built) { std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now()); long long diff = std::chrono::duration_cast<std::chrono::milliseconds>(crt_pt - last_pt).count(); debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]"; if(last_ln == built_ln) debug_stream << " (when built)"; debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n"; last_pt = built_pt, last_ln = built_ln, last_func = built_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n"; } } } myclock; // unnamed class #define build_clock() myclock.build(__LINE__, __func__) #define set_clock() myclock.set(__LINE__, __func__) #define get_clock() myclock.get(__LINE__, __func__) #else #define build_clock() ((void)0) #define set_clock() ((void)0) #define get_clock() ((void)0) #endif namespace std { // hash template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } }; template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } }; // iostream template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; } template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; } template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } }; template <class tuple_t> struct tupleis<tuple_t, ~0> { static istream &apply(istream &is, tuple_t &t) { return is; } }; template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); } template <> istream &operator>>(istream &is, tuple<> &t) { return is; } template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } }; template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } }; template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); } template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; } template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr> istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; } template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr> ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; } } // namespace std #ifdef LOCAL #define dump(...) \ debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", \ dump_func(#__VA_ARGS__, __VA_ARGS__) template <class T> void dump_func(const char *ptr, const T &x) { debug_stream << '\t'; for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ') debug_stream << c; debug_stream << " : " << x << '\n'; } template <class T, class... rest_t> void dump_func(const char *ptr, const T &x, rest_t... rest) { debug_stream << '\t'; for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ') debug_stream << c; debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...); } #else #define dump(...) ((void)0) #endif template <class P> void read_range(P __first, P __second) { for(P i = __first; i != __second; ++i) std::cin >> *i; } template <class P> void write_range(P __first, P __second) { for(P i = __first; i != __second; std::cout << (++i == __second ? '\n' : ' ')) std::cout << *i; } // substitue y for x if x > y. template <class T> inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; } // substitue y for x if x < y. template <class T> inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; } // binary search. i64 bin(const std::function<bool(i64)> &pred, i64 ok, i64 ng) { while(std::abs(ok - ng) > 1) { i64 mid = (ok + ng) / 2; (pred(mid) ? ok : ng) = mid; } return ok; } double bin(const std::function<bool(double)> &pred, double ok, double ng, const double eps) { while(std::abs(ok - ng) > eps) { double mid = (ok + ng) / 2; (pred(mid) ? ok : ng) = mid; } return ok; } // be careful that val is type-sensitive. template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T *)array, (T *)(array + N), val); } // reset all bits. template <class A> void reset(A &array) { memset(array, 0, sizeof(array)); } /* The main code follows. */ template <class Monoid, class act_t> class Lazy_segment_tree { const size_t n, N; std::vector<Monoid> data; std::vector<act_t> lazy; bool *const flag; using opr_t = std::function<Monoid(const Monoid&, const Monoid&)>; using lazy_opr_t = std::function<void(act_t&, const act_t&)>; using update_opr_t = std::function<void(Monoid&, const act_t&)>; const opr_t opr; const lazy_opr_t lazy_opr; const update_opr_t update_opr; const Monoid identity; const act_t lazy_identity; public: Lazy_segment_tree(size_t _n, const Monoid &_identity, const act_t &_lazy_identity, const opr_t &_opr, const lazy_opr_t &_lazy_opr, const update_opr_t &_update_opr) : n(_n), N(n > 1 ? 1 << (32 - __builtin_clz(n - 1)) : 1), data(N << 1, _identity), lazy(N << 1, _lazy_identity), flag(new bool[N << 1]), opr(_opr), lazy_opr(_lazy_opr), update_opr(_update_opr), identity(_identity), lazy_identity(_lazy_identity) {} ~Lazy_segment_tree() { delete[] flag; } Monoid operator[](size_t i) { return query(i, i + 1); } template <class P> void build(P s, P t) { for(size_t i = N; s != t; ++s, ++i) data[i] = *s; for(size_t i = N - 1; i; --i) data[i] = opr(data[left(i)], data[right(i)]); } template <template <class, class> class A> void build(A<Monoid, std::allocator<Monoid>> &v) { build(std::begin(v), std::end(v)); } void init(const Monoid &x) { for(size_t i = 0; i < N; ++i) data[i + N] = x; for(size_t i = N - 1; i; --i) data[i] = opr(data[left(i)], data[right(i)]); } void update(size_t a, const act_t &actor) { update(a, a + 1, actor); } void update(size_t a, size_t b, const act_t &actor) { update(a, b, actor, 1, 0, N); } Monoid query(size_t a, size_t b) { return query(a, b, 1, 0, N); } size_t right_bound(size_t idx, const std::function<bool(const Monoid &)> &f) { assert(idx < n); size_t ret = idx; Monoid now = identity; right_bound(idx, f, 1, 0, N, now, ret); return std::min(ret, n); } size_t left_bound(size_t idx, const std::function<bool(const Monoid &)> &f) { assert(idx <= n); size_t ret = idx; Monoid now = identity; left_bound(idx, f, 1, 0, N, now, ret); return ret; } private: size_t left(const size_t k) const { return k * 2; } size_t right(const size_t k) const { return left(k) ^ 1; } size_t parent(const size_t k) const { return k >> 1; } size_t sibling(const size_t k) const { return k ^ 1; } void eval(size_t k, size_t l, size_t r) { if(!flag[k]) return; update_opr(data[k], lazy[k]); if(r - l > 1) { lazy_opr(lazy[left(k)], lazy[k]); lazy_opr(lazy[right(k)], lazy[k]); flag[left(k)] = flag[right(k)] = true; } lazy[k] = lazy_identity, flag[k] = false; } void update(size_t a, size_t b, const act_t &actor, size_t k, size_t l, size_t r) { eval(k, l, r); if(b <= l || r <= a) return; if(a <= l && r <= b) lazy_opr(lazy[k], actor), flag[k] = true, eval(k, l, r); else { update(a, b, actor, left(k), l, (l + r) >> 1); update(a, b, actor, right(k), (l + r) >> 1, r); data[k] = opr(data[left(k)], data[right(k)]); } } Monoid query(size_t a, size_t b, size_t k, size_t l, size_t r) { if(b <= l || r <= a) return identity; eval(k, l, r); if(a <= l && r <= b) return data[k]; return opr(query(a, b, left(k), l, (l + r) >> 1), query(a, b, right(k), (l + r) >> 1, r)); } void right_bound(size_t idx, const std::function<bool(const Monoid &)> &f, size_t k, size_t l, size_t r, Monoid &now, size_t &pos) { if(idx >= r || l > pos) return; eval(k, l, r); const size_t mid = (l + r) >> 1; if(l >= idx) { Monoid nxt = opr(now, data[k]); if(f(nxt)) { pos = r; now = nxt; return; } } if(r - l > 1) { right_bound(idx, f, left(k), l, mid, now, pos); right_bound(idx, f, right(k), mid, r, now, pos); } } void left_bound(size_t idx, const std::function<bool(const Monoid &)> &f, size_t k, size_t l, size_t r, Monoid &now, size_t &pos) { if(idx <= l || r < pos) return; eval(k, l, r); const size_t mid = (l + r) >> 1; if(r <= idx) { Monoid nxt = opr(data[k], now); if(f(nxt)) { pos = l; now = nxt; return; } } if(r - l > 1) { left_bound(idx, f, right(k), mid, r, now, pos); left_bound(idx, f, left(k), l, mid, now, pos); } } }; //class Lazy_segment_tree using namespace std; struct solver { const string sig="YKC"; solver() { using tup=tuple<int,char>; int n,m; cin>>n>>m; Lazy_segment_tree<tup,tup> laz(n,{m,0},{m,0},[](tup x, tup y){return min(x,y);},[](tup &x, tup y){x=min(x,y);},[](tup &x, tup y){x=min(x,y);}); for(int i=0; i<m; ++i) { int l,r; char t; cin>>l>>r>>t; --l; laz.update(l,r,{i,t}); } int cnt[3]={}; for(int i=0; i<n; ++i) { char x; tie(ignore,x)=laz[i]; cnt[sig.find(x)]++; } cout << cnt[0] << " " << cnt[1] << " " << cnt[2] << "\n"; } }; main() { u32 t = 1; #ifdef LOCAL t=2; #endif // t = -1; // infinite loop // cin >> t; // case number given while(t--) solver(); }