結果
問題 |
No.947 ABC包囲網
|
ユーザー |
|
提出日時 | 2019-12-10 20:46:44 |
言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,401 bytes |
コンパイル時間 | 628 ms |
コンパイル使用メモリ | 47,568 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-06-24 02:20:26 |
合計ジャッジ時間 | 60,417 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 38 TLE * 22 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:94:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 94 | scanf("%d", &n); | ~~~~~^~~~~~~~~~ main.cpp: In member function ‘void Point::in()’: main.cpp:18:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 18 | scanf("%lf", &tmp); | ~~~~~^~~~~~~~~~~~~ main.cpp:20:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 20 | scanf("%lf", &tmp); | ~~~~~^~~~~~~~~~~~~
ソースコード
bool debug = false; #include <stdio.h> #include <assert.h> #include <algorithm> #include <vector> using namespace std; constexpr long double kEps = 1E-10; constexpr int kN = int(4E3 + 10), kInf = int(1E9 + 10); #define PB push_back struct Point { long double x, y; Point(long double a, long double b) {x = a, y = b;} Point() {} void in() { double tmp; scanf("%lf", &tmp); x = tmp; scanf("%lf", &tmp); y = tmp; return ; } Point operator -(Point b) const {return Point(x - b.x, y - b.y);} Point operator /(long double b) {return Point(x / b, y / b);} long double operator *(Point b) const {return x * b.x + y * b.y;} long double operator ^(Point b) const {return x * b.y - y * b.x;} }; struct Line { long double a, b, c; Line(Point pa, Point pb) :a(pa.y - pb.y), b(pb.x - pa.x), c(pa ^ pb){} }; const Point O(0, 0); int dcmp(long double x) {return x > kEps ? 1 : x < -kEps ? -1 : 0;} Point line_intersection(Line l1, Line l2) { return Point(-l1.b * l2.c + l1.c * l2.b, l1.a * l2.c - l1.c * l2.a) / (-l1.a * l2.b + l1.b * l2.a); } bool onsegment(Point p, Point a, Point b) { return dcmp((a - p) * (b - p)) < -kEps; } int n; Point p[kN]; int cnt(int x) { vector<int> left, right; int lpos = 0, rpos = 0, lsz, rsz, ans = 0; Line l(p[x], O); long double tmp; for (int i = 1; i <= n; i++) if (i != x) { tmp = p[i] ^ p[x]; if (tmp < -kEps) left.PB(i); else if (tmp > kEps) right.PB(i); } auto cmp = [&](int a, int b) {return (p[a] ^ p[b]) > kEps;}; sort(left.begin(), left.end(), cmp); sort(right.begin(), right.end(), cmp); lsz = int(left.size()); rsz = int(right.size()); if (debug) { printf("x = %d\n", x); printf("-- left --\n"); for (int i : left) printf("%d\n", i); printf("-- right --\n"); for (int i : right) printf("%d\n", i); } while (lpos < lsz) { while (rpos < rsz) { if (onsegment(O, line_intersection(l, Line(p[left[lpos]], p[right[rpos]])), p[x])) rpos++; else break; } if (debug) printf("lpos = %d, rpos = %d\n", lpos, rpos); ans += rpos; lpos++; } if (debug) printf("ans = %d\n", ans); return ans; } int main() { long long int ans = 0; scanf("%d", &n); for (int i = 1; i <= n; i++) p[i].in(); for (int i = 1; i <= n; i++) ans += cnt(i); assert(ans % 3 == 0); printf("%lld\n", ans / 3); }