結果
問題 | No.947 ABC包囲網 |
ユーザー | ianCK |
提出日時 | 2019-12-10 20:49:59 |
言語 | C++11 (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 1,882 ms / 2,000 ms |
コード長 | 2,029 bytes |
コンパイル時間 | 590 ms |
コンパイル使用メモリ | 46,604 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-24 02:22:21 |
合計ジャッジ時間 | 43,841 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 60 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:79:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 79 | scanf("%d", &n); | ~~~~~^~~~~~~~~~ main.cpp: In member function ‘void Point::in()’: main.cpp:16:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 16 | scanf("%lf%lf", &x, &y); | ~~~~~^~~~~~~~~~~~~~~~~~
ソースコード
#include <stdio.h> #include <assert.h> #include <algorithm> #include <vector> using namespace std; constexpr double kEps = 1E-10; constexpr int kN = int(4E3 + 10), kInf = int(1E9 + 10); #define PB push_back struct Point { double x, y; Point(double a, double b) {x = a, y = b;} Point() {} void in() { scanf("%lf%lf", &x, &y); return ; } inline Point operator -(Point b) const {return Point(x - b.x, y - b.y);} inline Point operator /(double b) {return Point(x / b, y / b);} inline double operator *(Point b) const {return x * b.x + y * b.y;} inline double operator ^(Point b) const {return x * b.y - y * b.x;} }; struct Line { double a, b, c; Line(Point pa, Point pb) :a(pa.y - pb.y), b(pb.x - pa.x), c(pa ^ pb){} }; const Point O(0, 0); int dcmp(double x) {return x > kEps ? 1 : x < -kEps ? -1 : 0;} inline Point line_intersection(Line l1, Line l2) { return Point(-l1.b * l2.c + l1.c * l2.b, l1.a * l2.c - l1.c * l2.a) / (-l1.a * l2.b + l1.b * l2.a); } inline bool onsegment(Point p, Point a, Point b) { return dcmp((a - p) * (b - p)) < -kEps; } int n; Point p[kN]; int cnt(int x) { vector<int> left, right; int lpos = 0, rpos = 0, lsz, rsz, ans = 0; Line l(p[x], O); double tmp; for (int i = 1; i <= n; i++) if (i != x) { tmp = p[i] ^ p[x]; if (tmp < -kEps) left.PB(i); else if (tmp > kEps) right.PB(i); } auto cmp = [&](int a, int b) {return (p[a] ^ p[b]) > kEps;}; sort(left.begin(), left.end(), cmp); sort(right.begin(), right.end(), cmp); lsz = int(left.size()); rsz = int(right.size()); while (lpos < lsz) { while (rpos < rsz) { if (onsegment(O, line_intersection(l, Line(p[left[lpos]], p[right[rpos]])), p[x])) rpos++; else break; } ans += rpos; lpos++; } return ans; } int main() { long long int ans = 0; scanf("%d", &n); for (int i = 1; i <= n; i++) p[i].in(); for (int i = 1; i <= n; i++) ans += cnt(i); assert(ans % 3 == 0); printf("%lld\n", ans / 3); }