結果
| 問題 |
No.786 京都大学の過去問
|
| コンテスト | |
| ユーザー |
Flkanjin
|
| 提出日時 | 2019-12-11 14:35:06 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 8,956 bytes |
| コンパイル時間 | 1,264 ms |
| コンパイル使用メモリ | 112,260 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-06-24 07:40:11 |
| 合計ジャッジ時間 | 1,791 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 5 |
ソースコード
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cctype>
#include <clocale>
#include <cmath>
#include <cstdlib>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
#define IOS ios::sync_with_stdio(false); cin.tie(0);
#define FOR(i, s, n) for(int i = (s), i##_len=(n); i < i##_len; ++i)
#define FORS(i, s, n) for(int i = (s), i##_len=(n); i <= i##_len; ++i)
#define VFOR(i, s, n) for(int i = (s); i < (n); ++i)
#define VFORS(i, s, n) for(int i = (s); i <= (n); ++i)
#define REP(i, n) FOR(i, 0, n)
#define REPS(i, n) FORS(i, 0, n)
#define VREP(i, n) VFOR(i, 0, n)
#define VREPS(i, n) VFORS(i, 0, n)
#define RFOR(i, s, n) for(int i = (s), i##_len=(n); i >= i##_len; --i)
#define RFORS(i, s, n) for(int i = (s), i##_len=(n); i > i##_len; --i)
#define RREP(i, n) RFOR(i, n, 0)
#define RREPS(i, n) RFORS(i, n, 0)
#define ALL(v) (v).begin(), (v).end()
#define SORT(v) sort(ALL(v))
#define RSORT(v) sort(ALL(v), greater<decltype(v[0])>())
#define SZ(x) ((int)(x).size())
#define PB push_back
#define MP make_pair
#define MT make_tuple
#define BIT(n) (1LL<<(n))
#define UNIQUE(v) v.erase(unique(ALL(v)), v.end())
using ll = long long;
using PII = pair<int, int>;
using VI = vector<int>;
using VD = vector<double>;
using VLL = vector<ll>;
using VS = vector<string>;
using VC = vector<char>;
using VB = vector<bool>;
const int MOD = 1000000007;
const int INF = 1000000000;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){
a = b; return true;
}
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(b < a){
a = b; return true;
}
return false;
}
template <class T>
class Matrix{
private:
vector<vector<T>> A;
public:
Matrix(){}
Matrix(size_t m, size_t n): A(m, vector<T>(n, 0)) {}
Matrix(size_t n): A(n, vector<T>(n, 0)) {}
Matrix(size_t m, size_t n, T a): A(m, vector<T>(n, a)) {}
Matrix(const Matrix& mat){if(this != &mat) A = mat.A;}
Matrix(vector<vector<T>> v){
size_t m = v.size();
assert(m != 0);
size_t n = v[0].size();
REP(i, m) assert(v[i].size() == n);
A = v;
}
~Matrix() {}
size_t height() const{return A.size();}
size_t width() const{
if(!height()) return 0;
return A[0].size();
}
void setHeight(int h){A.resize(h, vector<T>(width(), 0));}
void setWidth(int w){
size_t m = height();
REP(i, m) A[i].resize(w, 0);
}
void setSize(int h, int w){
setHeight(h); setWidth(w);
}
void inputNoChangeSize(){
size_t m = height(), n = width();
REP(i, m) REP(j, n) cin >> A[i][j];
}
void input(int h, int w){
setSize(h, w);
inputNoChangeSize();
}
void input(){
int h, w; cin >> h >> w;
input(h, w);
}
bool sameSize(const Matrix& mat) const{
return height() == mat.height() && width() == mat.width();
}
inline const vector<T> &operator[](int idx) const{return A.at(idx);}
inline vector<T> &operator[](int k){return (A.at(k));}
void print2D(int w){
size_t m = height(), n = width();
REP(i, m){
REP(j, n){
if(j) cout << " ";
cout << setw(w) << (*this)[i][j];
}
cout << "\n";
}
}
void print2D(){
size_t m = height(), n = width();
REP(i, m){
REP(j, n){
if(j) cout << " ";
cout << (*this)[i][j];
}
cout << "\n";
}
}
friend ostream& operator<<(ostream& os, const Matrix& B){
size_t m = B.height(), n = B.width();
REP(i, m){
REP(j, n){
if(j) os << " ";
os << B[i][j];
}
os << "\n";
}
return (os);
}
static Matrix identity(size_t n){
Matrix ret(n);
REP(i, n) ret[i][i] = 1;
return ret;
}
Matrix transpose() const{
size_t n = height(), m = width();
Matrix ret(m, n);
REP(i, m) REP(j, n) ret[i][j] = (*this)[j][i];
return ret;
}
Matrix operator+() const{return *this;}
Matrix operator-() const{
size_t m = height(), n = width();
Matrix temp(height(), width());
REP(i, m) REP(j, n) temp[i][j] = -(*this)[i][j];
return temp;
}
Matrix& operator=(const Matrix& B){
if(this != &B){
A = B.A;
}
return *this;
}
Matrix& operator+=(const Matrix& B){
assert(sameSize(B));
size_t m = height(), n = width();
REP(i, m) REP(j, n) (*this)[i][j] += B[i][j];
return *this;
}
Matrix& operator-=(const Matrix& B){
assert(sameSize(B));
size_t m = height(), n = width();
REP(i, m) REP(j, n) (*this)[i][j] -= B[i][j];
return *this;
}
Matrix& operator*=(const Matrix& B){
size_t m = height(), n = width(), l = B.width();
assert(n == B.height());
vector<vector<T>> C(m, vector<T>(l, 0));
REP(i, m) REP(j, l) REP(k, n)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
A.swap(C);
return *this;
}
Matrix& operator*=(const T a){
size_t m = height(), n = width();
REP(i, m) REP(j, n) (*this)[i][j] *= a;
return *this;
}
Matrix& operator%=(const ll &mod){
size_t m = height(), n = width();
REP(i, m) REP(j, n) (*this)[i][j] %= mod;
return *this;
}
Matrix& operator^=(const Matrix &B){
assert(sameSize(B));
size_t m = height(), n = width();
REP(i, m) REP(j, n) (*this)[i][j] ^= B[i][j];
return *this;
}
Matrix& operator|=(const Matrix &B){
assert(sameSize(B));
size_t m = height(), n = width();
REP(i, m) REP(j, n) (*this)[i][j] |= B[i][j];
return *this;
}
Matrix& operator&=(const Matrix &B){
size_t m = height(), n = width(), l = B.width();
assert(n == B.height());
vector<vector<T>> C(m, vector<T>(l, 0));
REP(i, m) REP(j, l) REP(k, n)
C[i][j] = (C[i][j] ^ ((*this)[i][k] & B[k][j]));
A.swap(C);
return *this;
}
Matrix operator+(const Matrix& mat) const{
Matrix temp(*this);
return temp += mat;
}
Matrix operator-(const Matrix& mat) const{
Matrix temp(*this);
return temp -= mat;
}
Matrix operator*(const Matrix& mat) const{
Matrix temp(*this);
return temp *= mat;
}
Matrix operator*(const T& a) const{
Matrix temp(*this);
return temp *= a;
}
friend Matrix operator*(T a, const Matrix& B){
return B * a;
}
Matrix operator%(const ll mod) const{
Matrix temp(*this);
return temp %= mod;
}
Matrix operator^(const Matrix& mat) const{
Matrix temp(*this);
return temp ^= mat;
}
Matrix operator|(const Matrix& mat) const{
Matrix temp(*this);
return temp |= mat;
}
Matrix operator&(const Matrix& mat) const{
Matrix temp(*this);
return temp &= mat;
}
bool operator==(const Matrix& mat) const{
if(!sameSize(mat)) return false;
size_t m = height(), n = width();
REP(i, m) REP(j, n) if((*this)[i][j] != mat[i][j]) return false;
return true;
}
bool operator!=(const Matrix& mat) const{return !(*this == mat);}
Matrix powWithoutMod(ll b){
size_t n = height();
assert(n == width());
Matrix ret = identity(n);
Matrix a = *this;
while(b){
if(b & 1) ret = ret * a;
a = a * a;
b /= 2;
}
return ret;
}
Matrix power(ll b, ll mod){
size_t n = height();
assert(n == width());
Matrix ret = identity(n);
Matrix a = *this;
while(b){
if(b & 1) ret = (ret * a) % mod;
a = (a * a) % mod;
b /= 2;
}
return ret;
}
Matrix power(ll b) {
return pow(b, MOD);
}
Matrix powXorAnd(ll b){
size_t n = height();
assert(n == width());
Matrix ret = identity(n);
ret *= -1;
Matrix a = *this;
while(b){
if(b & 1) ret = ret & a;
a = a & a;
b /= 2;
}
return ret;
}
};
ll fibonacci(int n){
if(!n) return 1;
vector<ll> a1{1, 1}, a2{1, 0};
vector<vector<ll>> a{a1, a2};
Matrix<ll> mat(a);
mat = mat.powWithoutMod(n-1);
return mat[0][0] + mat[0][1];
}
int main(){
int n; cin >> n;
cout << fibonacci(n) << "\n";
return 0;
}
Flkanjin