結果
問題 | No.963 門松列列(2) |
ユーザー |
|
提出日時 | 2019-12-11 22:42:23 |
言語 | Java (openjdk 23) |
結果 |
WA
|
実行時間 | - |
コード長 | 19,282 bytes |
コンパイル時間 | 3,056 ms |
コンパイル使用メモリ | 92,412 KB |
実行使用メモリ | 106,620 KB |
最終ジャッジ日時 | 2024-06-25 20:47:42 |
合計ジャッジ時間 | 11,909 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | WA * 11 |
ソースコード
import java.io.ByteArrayInputStream;import java.io.IOException;import java.io.InputStream;import java.io.PrintWriter;import java.util.Arrays;import java.util.InputMismatchException;public class Main {InputStream is;PrintWriter out;String INPUT = "";public static int mod = 1000000007;static int[][] fif = enumFIF(2200005, mod);void solve() {int N = ni();long[] cos0 = new long[N / 2 + 5];long[] sin0 = new long[N / 2 + 5];for (int i = 0; i < cos0.length; i++) {cos0[i] = (long) fif[1][2 * i] * (i % 2 == 0 ? 1 : mod - 1) % mod;}for (int i = 0; i < sin0.length; i++) {sin0[i] = (long) fif[1][2 * i + 1] * (i % 2 == 0 ? 1 : mod - 1) % mod;}cos0 = inv(cos0);sin0 = convolute(sin0, cos0, 3, mod);long[] ret = new long[N + 1];for (int i = 0; i < sin0.length && 2 * i + 1 < ret.length; ++i) {ret[2 * i + 1] = sin0[i];}for (int i = 0; i < cos0.length && 2 * i < ret.length; ++i) {ret[2 * i] += cos0[i];ret[2 * i] %= mod;}out.println(2 * ret[N] * fif[0][N] % mod);}public static long[] mul(long[] a, long[] b) {if (Math.max(a.length, b.length) >= 3000) {return Arrays.copyOf(convolute(a, b, 3, mod), a.length + b.length - 1);} else {return mulnaive(a, b);}}public static long[] mul(long[] a, long[] b, int lim) {if (Math.max(a.length, b.length) >= 3000) {return Arrays.copyOf(convolute(a, b, 3, mod), lim);} else {return mulnaive(a, b, lim);}}public static long[] mulnaive(long[] a, long[] b) {long[] c = new long[a.length + b.length - 1];long big = 8L * mod * mod;for (int i = 0; i < a.length; i++) {for (int j = 0; j < b.length; j++) {c[i + j] += a[i] * b[j];if (c[i + j] >= big)c[i + j] -= big;}}for (int i = 0; i < c.length; i++)c[i] %= mod;return c;}public static long[] mulnaive(long[] a, long[] b, int lim) {long[] c = new long[lim];long big = 8L * mod * mod;for (int i = 0; i < a.length; i++) {for (int j = 0; j < b.length && i + j < lim; j++) {c[i + j] += a[i] * b[j];if (c[i + j] >= big)c[i + j] -= big;}}for (int i = 0; i < c.length; i++)c[i] %= mod;return c;}public static long[] mul_(long[] a, long k) {for (int i = 0; i < a.length; i++)a[i] = a[i] * k % mod;return a;}public static long[] mul(long[] a, long k) {a = Arrays.copyOf(a, a.length);for (int i = 0; i < a.length; i++)a[i] = a[i] * k % mod;return a;}public static long[] add(long[] a, long[] b) {long[] c = new long[Math.max(a.length, b.length)];for (int i = 0; i < a.length; i++)c[i] += a[i];for (int i = 0; i < b.length; i++)c[i] += b[i];for (int i = 0; i < c.length; i++)if (c[i] >= mod)c[i] -= mod;return c;}public static long[] add(long[] a, long[] b, int lim) {long[] c = new long[lim];for (int i = 0; i < a.length && i < lim; i++)c[i] += a[i];for (int i = 0; i < b.length && i < lim; i++)c[i] += b[i];for (int i = 0; i < c.length; i++)if (c[i] >= mod)c[i] -= mod;return c;}public static long[] sub(long[] a, long[] b) {long[] c = new long[Math.max(a.length, b.length)];for (int i = 0; i < a.length; i++)c[i] += a[i];for (int i = 0; i < b.length; i++)c[i] -= b[i];for (int i = 0; i < c.length; i++)if (c[i] < 0)c[i] += mod;return c;}public static long[] sub(long[] a, long[] b, int lim) {long[] c = new long[lim];for (int i = 0; i < a.length && i < lim; i++)c[i] += a[i];for (int i = 0; i < b.length && i < lim; i++)c[i] -= b[i];for (int i = 0; i < c.length; i++)if (c[i] < 0)c[i] += mod;return c;}// F_{t+1}(x) = -F_t(x)^2*P(x) + 2F_t(x)// if want p-destructive, comment out flipping p just before returning.public static long[] inv(long[] p) {int n = p.length;long[] f = { invl(p[0], mod) };for (int i = 0; i < p.length; i++) {if (p[i] == 0)continue;p[i] = mod - p[i];}for (int i = 1; i < 2 * n; i *= 2) {long[] f2 = mul(f, f, Math.min(n, 2 * i));long[] f2p = mul(f2, Arrays.copyOf(p, i), Math.min(n, 2 * i));for (int j = 0; j < f.length; j++) {f2p[j] += 2L * f[j];if (f2p[j] >= mod)f2p[j] -= mod;if (f2p[j] >= mod)f2p[j] -= mod;}f = f2p;}for (int i = 0; i < p.length; i++) {if (p[i] == 0)continue;p[i] = mod - p[i];}return f;}// differentiatepublic static long[] d(long[] p) {long[] q = new long[p.length];for (int i = 0; i < p.length - 1; i++) {q[i] = p[i + 1] * (i + 1) % mod;}return q;}// integratepublic static long[] i(long[] p) {long[] q = new long[p.length];for (int i = 0; i < p.length - 1; i++) {q[i + 1] = p[i] * invl(i + 1, mod) % mod;}return q;}static long[] exp(long[] a) {return exp(a, a.length);}/*** https://cs.uwaterloo.ca/~eschost/publications/BoSc09-final.pdf** @verified https://judge.yosupo.jp/problem/exp_of_formal_power_series* @param a* @param lim* @return*/static long[] exp(long[] a, int lim) {long[] F = { 1L };long[] G = { 1L };long[] da = d(a);for (int m = 1;; m *= 2) {long[] G2 = mul(G, G, m);G = sub(mul_(G, 2), mul(F, G2, m));long[] Q = Arrays.copyOf(da, m - 1);long[] W = add(Q, mul(G, sub(d(F), mul(F, Q, m), m - 1)));F = mul(F, add(new long[] { 1 }, sub(Arrays.copyOf(a, m), i(W))), m);if (m >= lim)break;}return Arrays.copyOf(F, lim);}//// // F_{t+1}(x) = F_t(x)-(ln F_t(x) - P(x)) * F_t(x)// public static long[] exp(long[] p)// {// int n = p.length;// long[] f = {p[0]};// for(int i = 1;i < 2*n;i*=2){// long[] ii = ln(f);// long[] sub = sub(ii, p, Math.min(n, 2*i));// if(--sub[0] < 0)sub[0] += mod;// for(int j = 0;j < 2*i && j < n;j++){// sub[j] = mod-sub[j];// if(sub[j] == mod)sub[j] = 0;// }// f = mul(sub, f, Math.min(n, 2*i));//// f = sub(f, mul(sub(ii, p, 2*i), f, 2*i));// }// return f;// }// \int f'(x)/f(x) dxpublic static long[] ln(long[] f) {long[] ret = i(mul(d(f), inv(f)));ret[0] = f[0];return ret;}// ln F(x) - k ln P(x) = 0public static long[] pow(long[] p, int K) {int n = p.length;long[] lnp = ln(p);for (int i = 1; i < lnp.length; i++)lnp[i] = lnp[i] * K % mod;lnp[0] = pow(p[0], K, mod); // go well for some reasonreturn exp(Arrays.copyOf(lnp, n));}// destructivepublic static long[] divf(long[] a, int[][] fif) {for (int i = 0; i < a.length; i++)a[i] = a[i] * fif[1][i] % mod;return a;}// destructivepublic static long[] mulf(long[] a, int[][] fif) {for (int i = 0; i < a.length; i++)a[i] = a[i] * fif[0][i] % mod;return a;}public static long[] transformExponentially(long[] a, int[][] fif) {return mulf(exp(divf(Arrays.copyOf(a, a.length), fif)), fif);}public static long[] transformLogarithmically(long[] a, int[][] fif) {return mulf(Arrays.copyOf(ln(divf(Arrays.copyOf(a, a.length), fif)), a.length), fif);}// 1/(1-F)-1static long[] transformInvertly(long[] a) {long[] b = new long[a.length];for (int i = 0; i < a.length; i++) {b[i] = mod - a[i];if (b[i] == mod)b[i] = 0;}if (++b[0] == mod)b[0] = 0;long[] ret = inv(b);if (--ret[0] < 0)ret[0] += mod;return ret;}// -1/(1+F)+1static long[] transformInverseOfInvertly(long[] a) {long[] b = new long[a.length];for (int i = 0; i < a.length; i++) {b[i] = a[i];}if (++b[0] == mod)b[0] = 0;long[] ret = inv(b);for (int i = 0; i < a.length; i++) {ret[i] = mod - ret[i];if (ret[i] == mod)ret[i] = 0;}if (++ret[0] == mod)ret[0] = 0;return ret;}public static long[] reverse(long[] p) {long[] ret = new long[p.length];for (int i = 0; i < p.length; i++) {ret[i] = p[p.length - 1 - i];}return ret;}public static long[] reverse(long[] p, int lim) {long[] ret = new long[lim];for (int i = 0; i < lim && i < p.length; i++) {ret[i] = p[p.length - 1 - i];}return ret;}// [quotient, remainder]// remainder can be empty.//// deg(f)=n, deg(g)=m, f=gq+r, f=gq+r.// f* = x^n*f(1/x),// t=g*^-1 mod x^(n-m+1), q=(tf* mod x^(n-m+1))*public static long[][] div(long[] f, long[] g) {int n = f.length, m = g.length;if (n < m)return new long[][] { new long[0], Arrays.copyOf(f, n) };long[] rf = reverse(f, n - m + 1);long[] rg = reverse(g, n - m + 1);long[] rq = mul(rf, inv(rg), n - m + 1);long[] q = reverse(rq, n - m + 1);long[] r = sub(f, mul(q, g, m - 1), m - 1);return new long[][] { q, r };}// public static final int[] NTTPrimes = {1053818881, 1051721729, 1045430273, 1012924417, 1007681537, 1004535809, 998244353, 985661441, 976224257,975175681};// public static final int[] NTTPrimitiveRoots = {7, 6, 3, 5, 3, 3, 3, 3, 3, 17};public static final int[] NTTPrimes = { 1012924417, 1004535809, 998244353, 985661441, 975175681, 962592769,950009857, 943718401, 935329793, 924844033 };public static final int[] NTTPrimitiveRoots = { 5, 3, 3, 3, 17, 7, 7, 7, 3, 5 };public static long[] convoluteSimply(long[] a, long[] b, int P, int g) {int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length) - 1) << 2);long[] fa = nttmb(a, m, false, P, g);long[] fb = a == b ? fa : nttmb(b, m, false, P, g);for (int i = 0; i < m; i++) {fa[i] = fa[i] * fb[i] % P;}return nttmb(fa, m, true, P, g);}public static long[] convolute(long[] a, long[] b) {int USE = 2;int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length) - 1) << 2);long[][] fs = new long[USE][];for (int k = 0; k < USE; k++) {int P = NTTPrimes[k], g = NTTPrimitiveRoots[k];long[] fa = nttmb(a, m, false, P, g);long[] fb = a == b ? fa : nttmb(b, m, false, P, g);for (int i = 0; i < m; i++) {fa[i] = fa[i] * fb[i] % P;}fs[k] = nttmb(fa, m, true, P, g);}int[] mods = Arrays.copyOf(NTTPrimes, USE);long[] gammas = garnerPrepare(mods);int[] buf = new int[USE];for (int i = 0; i < fs[0].length; i++) {for (int j = 0; j < USE; j++)buf[j] = (int) fs[j][i];long[] res = garnerBatch(buf, mods, gammas);long ret = 0;for (int j = res.length - 1; j >= 0; j--)ret = ret * mods[j] + res[j];fs[0][i] = ret;}return fs[0];}public static long[] convolute(long[] a, long[] b, int USE, int mod) {int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length) - 1) << 2);long[][] fs = new long[USE][];for (int k = 0; k < USE; k++) {int P = NTTPrimes[k], g = NTTPrimitiveRoots[k];long[] fa = nttmb(a, m, false, P, g);long[] fb = a == b ? fa : nttmb(b, m, false, P, g);for (int i = 0; i < m; i++) {fa[i] = fa[i] * fb[i] % P;}fs[k] = nttmb(fa, m, true, P, g);}int[] mods = Arrays.copyOf(NTTPrimes, USE);long[] gammas = garnerPrepare(mods);int[] buf = new int[USE];for (int i = 0; i < fs[0].length; i++) {for (int j = 0; j < USE; j++)buf[j] = (int) fs[j][i];long[] res = garnerBatch(buf, mods, gammas);long ret = 0;for (int j = res.length - 1; j >= 0; j--)ret = (ret * mods[j] + res[j]) % mod;fs[0][i] = ret;}return fs[0];}// static int[] wws = new int[270000]; // outer faster// Modifed Montgomery + Barrettprivate static long[] nttmb(long[] src, int n, boolean inverse, int P, int g) {long[] dst = Arrays.copyOf(src, n);int h = Integer.numberOfTrailingZeros(n);long K = Integer.highestOneBit(P) << 1;int H = Long.numberOfTrailingZeros(K) * 2;long M = K * K / P;int[] wws = new int[1 << h - 1];long dw = inverse ? pow(g, P - 1 - (P - 1) / n, P) : pow(g, (P - 1) / n, P);long w = (1L << 32) % P;for (int k = 0; k < 1 << h - 1; k++) {wws[k] = (int) w;w = modh(w * dw, M, H, P);}long J = invl(P, 1L << 32);for (int i = 0; i < h; i++) {for (int j = 0; j < 1 << i; j++) {for (int k = 0, s = j << h - i, t = s | 1 << h - i - 1; k < 1 << h - i - 1; k++, s++, t++) {long u = (dst[s] - dst[t] + 2 * P) * wws[k];dst[s] += dst[t];if (dst[s] >= 2 * P)dst[s] -= 2 * P;// long Q = (u&(1L<<32)-1)*J&(1L<<32)-1;long Q = (u << 32) * J >>> 32;dst[t] = (u >>> 32) - (Q * P >>> 32) + P;}}if (i < h - 1) {for (int k = 0; k < 1 << h - i - 2; k++)wws[k] = wws[k * 2];}}for (int i = 0; i < n; i++) {if (dst[i] >= P)dst[i] -= P;}for (int i = 0; i < n; i++) {int rev = Integer.reverse(i) >>> -h;if (i < rev) {long d = dst[i];dst[i] = dst[rev];dst[rev] = d;}}if (inverse) {long in = invl(n, P);for (int i = 0; i < n; i++)dst[i] = modh(dst[i] * in, M, H, P);}return dst;}// Modified Shoup + Barrettprivate static long[] nttsb(long[] src, int n, boolean inverse, int P, int g) {long[] dst = Arrays.copyOf(src, n);int h = Integer.numberOfTrailingZeros(n);long K = Integer.highestOneBit(P) << 1;int H = Long.numberOfTrailingZeros(K) * 2;long M = K * K / P;long dw = inverse ? pow(g, P - 1 - (P - 1) / n, P) : pow(g, (P - 1) / n, P);long[] wws = new long[1 << h - 1];long[] ws = new long[1 << h - 1];long w = 1;for (int k = 0; k < 1 << h - 1; k++) {wws[k] = (w << 32) / P;ws[k] = w;w = modh(w * dw, M, H, P);}for (int i = 0; i < h; i++) {for (int j = 0; j < 1 << i; j++) {for (int k = 0, s = j << h - i, t = s | 1 << h - i - 1; k < 1 << h - i - 1; k++, s++, t++) {long ndsts = dst[s] + dst[t];if (ndsts >= 2 * P)ndsts -= 2 * P;long T = dst[s] - dst[t] + 2 * P;long Q = wws[k] * T >>> 32;dst[s] = ndsts;dst[t] = ws[k] * T - Q * P & (1L << 32) - 1;}}// dw = dw * dw % P;if (i < h - 1) {for (int k = 0; k < 1 << h - i - 2; k++) {wws[k] = wws[k * 2];ws[k] = ws[k * 2];}}}for (int i = 0; i < n; i++) {if (dst[i] >= P)dst[i] -= P;}for (int i = 0; i < n; i++) {int rev = Integer.reverse(i) >>> -h;if (i < rev) {long d = dst[i];dst[i] = dst[rev];dst[rev] = d;}}if (inverse) {long in = invl(n, P);for (int i = 0; i < n; i++) {dst[i] = modh(dst[i] * in, M, H, P);}}return dst;}static final long mask = (1L << 31) - 1;public static long modh(long a, long M, int h, int mod) {long r = a - ((M * (a & mask) >>> 31) + M * (a >>> 31) >>> h - 31) * mod;return r < mod ? r : r - mod;}private static long[] garnerPrepare(int[] m) {int n = m.length;assert n == m.length;if (n == 0)return new long[0];long[] gamma = new long[n];for (int k = 1; k < n; k++) {long prod = 1;for (int i = 0; i < k; i++) {prod = prod * m[i] % m[k];}gamma[k] = invl(prod, m[k]);}return gamma;}private static long[] garnerBatch(int[] u, int[] m, long[] gamma) {int n = u.length;assert n == m.length;long[] v = new long[n];v[0] = u[0];for (int k = 1; k < n; k++) {long temp = v[k - 1];for (int j = k - 2; j >= 0; j--) {temp = (temp * m[j] + v[j]) % m[k];}v[k] = (u[k] - temp) * gamma[k] % m[k];if (v[k] < 0)v[k] += m[k];}return v;}private static long pow(long a, long n, long mod) {// a %= mod;long ret = 1;int x = 63 - Long.numberOfLeadingZeros(n);for (; x >= 0; x--) {ret = ret * ret % mod;if (n << 63 - x < 0)ret = ret * a % mod;}return ret;}private static long invl(long a, long mod) {long b = mod;long p = 1, q = 0;while (b > 0) {long c = a / b;long d;d = a;a = b;b = d % b;d = p;p = q;q = d - c * q;}return p < 0 ? p + mod : p;}public static long C(int n, int r, int mod, int[][] fif) {if (n < 0 || r < 0 || r > n)return 0;return (long) fif[0][n] * fif[1][r] % mod * fif[1][n - r] % mod;}public static int[][] enumFIF(int n, int mod) {int[] f = new int[n + 1];int[] invf = new int[n + 1];f[0] = 1;for (int i = 1; i <= n; i++) {f[i] = (int) ((long) f[i - 1] * i % mod);}long a = f[n];long b = mod;long p = 1, q = 0;while (b > 0) {long c = a / b;long d;d = a;a = b;b = d % b;d = p;p = q;q = d - c * q;}invf[n] = (int) (p < 0 ? p + mod : p);for (int i = n - 1; i >= 0; i--) {invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod);}return new int[][] { f, invf };}void run() throws Exception {is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());out = new PrintWriter(System.out);long s = System.currentTimeMillis();solve();out.flush();if (!INPUT.isEmpty())tr(System.currentTimeMillis() - s + "ms");// Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){// @Override// public void run() {// long s = System.currentTimeMillis();// solve();// out.flush();// if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");// }// };// t.start();// t.join();}public static void main(String[] args) throws Exception {new Main().run();}private byte[] inbuf = new byte[1024];public int lenbuf = 0, ptrbuf = 0;private int readByte() {if (lenbuf == -1)throw new InputMismatchException();if (ptrbuf >= lenbuf) {ptrbuf = 0;try {lenbuf = is.read(inbuf);} catch (IOException e) {throw new InputMismatchException();}if (lenbuf <= 0)return -1;}return inbuf[ptrbuf++];}private boolean isSpaceChar(int c) {return !(c >= 33 && c <= 126);}private int skip() {int b;while ((b = readByte()) != -1 && isSpaceChar(b));return b;}private double nd() {return Double.parseDouble(ns());}private char nc() {return (char) skip();}private String ns() {int b = skip();StringBuilder sb = new StringBuilder();while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')sb.appendCodePoint(b);b = readByte();}return sb.toString();}private char[] ns(int n) {char[] buf = new char[n];int b = skip(), p = 0;while (p < n && !(isSpaceChar(b))) {buf[p++] = (char) b;b = readByte();}return n == p ? buf : Arrays.copyOf(buf, p);}private int[] na(int n) {int[] a = new int[n];for (int i = 0; i < n; i++)a[i] = ni();return a;}private long[] nal(int n) {long[] a = new long[n];for (int i = 0; i < n; i++)a[i] = nl();return a;}private char[][] nm(int n, int m) {char[][] map = new char[n][];for (int i = 0; i < n; i++)map[i] = ns(m);return map;}private int[][] nmi(int n, int m) {int[][] map = new int[n][];for (int i = 0; i < n; i++)map[i] = na(m);return map;}private int ni() {return (int) nl();}private long nl() {long num = 0;int b;boolean minus = false;while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));if (b == '-') {minus = true;b = readByte();}while (true) {if (b >= '0' && b <= '9') {num = num * 10 + (b - '0');} else {return minus ? -num : num;}b = readByte();}}private static void tr(Object... o) {System.out.println(Arrays.deepToString(o));}}