結果
| 問題 |
No.950 行列累乗
|
| コンテスト | |
| ユーザー |
risujiroh
|
| 提出日時 | 2019-12-13 23:27:23 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 8,759 bytes |
| コンパイル時間 | 2,238 ms |
| コンパイル使用メモリ | 194,700 KB |
| 実行使用メモリ | 6,400 KB |
| 最終ジャッジ日時 | 2024-06-27 21:08:51 |
| 合計ジャッジ時間 | 9,821 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 WA * 1 RE * 2 |
| other | AC * 6 WA * 11 RE * 40 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
string to_string(string s) { return '"' + s + '"'; }
string to_string(bool b) { return b ? "true" : "false"; }
template <size_t N> string to_string(bitset<N> bs) {
string res;
for (size_t i = 0; i < N; ++i) res += '0' + bs[i];
return res;
}
string to_string(vector<bool> v) {
string res = "{";
for (bool e : v) res += to_string(e) + ", ";
return res += "}";
}
template <class T, class U> string to_string(pair<T, U> p);
template <class C> string to_string(C c) {
string res = "{";
for (auto e : c) res += to_string(e) + ", ";
return res += "}";
}
template <class T, class U> string to_string(pair<T, U> p) {
return "(" + to_string(p.first) + ", " + to_string(p.second) + ")";
}
void debug() { cerr << '\n'; }
template <class Head, class... Tail> void debug(Head head, Tail... tail) {
cerr << ' ' << to_string(head), debug(tail...);
}
#ifdef LOCAL
#define DEBUG(...) cerr << "[" << #__VA_ARGS__ << "]:", debug(__VA_ARGS__)
#else
#define DEBUG(...)
#endif
long long mod = 998244353;
struct Mint {
long long v;
Mint(long long a = 0) : v((a %= mod) < 0 ? a + mod : a) {}
Mint operator-() const { return 0 - *this; }
Mint& operator*=(Mint r) { v = (long long)v * r.v % mod; return *this; }
Mint& operator/=(Mint r) { return *this *= r.inv(); }
Mint& operator+=(Mint r) { if ((v += r.v) >= mod) v -= mod; return *this; }
Mint& operator-=(Mint r) { if ((v -= r.v) < 0) v += mod; return *this; }
friend Mint operator*(Mint l, Mint r) { return l *= r; }
friend Mint operator/(Mint l, Mint r) { return l /= r; }
friend Mint operator+(Mint l, Mint r) { return l += r; }
friend Mint operator-(Mint l, Mint r) { return l -= r; }
Mint pow(long long n) const {
assert(n >= 0);
Mint res = 1;
for (Mint t = *this; n; t *= t, n >>= 1) if (n & 1) res *= t;
return res;
}
Mint inv() const { assert(v); return pow(mod - 2); }
friend string to_string(Mint a) { return to_string(a.v); }
};
Mint alpha;
struct Cint {
Mint a, b;
Cint(Mint _a = 0, Mint _b = 0) : a(_a), b(_b) {}
Cint(long long _a) : a(_a), b(0) {}
Cint operator-() const { return {-a, -b}; }
Cint& operator*=(Cint r) {
return *this = {a * r.a + alpha * b * r.b, a * r.b + b * r.a};
}
Cint& operator/=(Cint r) { return *this *= r.inv(); }
Cint& operator+=(Cint r) { a += r.a, b += r.b; return *this; }
Cint& operator-=(Cint r) { a -= r.a, b -= r.b; return *this; }
friend Cint operator*(Cint l, Cint r) { return l *= r; }
friend Cint operator/(Cint l, Cint r) { return l /= r; }
friend Cint operator+(Cint l, Cint r) { return l += r; }
friend Cint operator-(Cint l, Cint r) { return l -= r; }
Cint pow(long long n) const {
Cint res = {1, 0};
for (Cint t = *this; n; t *= t, n >>= 1) if (n & 1) res *= t;
return res;
}
Cint inv() const {
Mint den = a * a - alpha * b * b;
return {a / den, -b / den};
}
friend string to_string(Cint c) { return "(" + to_string(c.a) + ", " + to_string(c.b) + ")"; }
};
bool operator<(Cint l, Cint r) { return make_pair(l.a.v, l.b.v) < make_pair(r.a.v, r.b.v); }
bool operator==(Cint l, Cint r) { return l.a.v == r.a.v and l.b.v == r.b.v; }
template <class T> using Mat = array< array<T, 2>, 2 >;
template <class T> Mat<T> operator*(Mat<T> A, Mat<T> B) {
Mat<T> res;
for (int i : {0, 1}) {
for (int k : {0, 1}) {
for (int j : {0, 1}) {
res[i][j] += A[i][k] * B[k][j];
}
}
}
return res;
}
template <class T> Mat<T>& operator*=(Mat<T>& A, Mat<T> B) { return A = A * B; }
template <class T> Mat<T> pow(Mat<T> A, long long n) {
Mat<T> res = {1, 0, 0, 1};
while (n) {
if (n & 1) {
res *= A;
}
A *= A;
n >>= 1;
}
return res;
}
template <class T> Mat<T> inv(Mat<T> A) {
Mat<T> res{
A[1][1], -A[0][1],
-A[1][0], A[0][0]
};
T det = A[0][0] * A[1][1] - A[0][1] * A[1][0];
for (int i : {0, 1}) {
for (int j : {0, 1}) {
res[i][j] /= det;
}
}
return res;
}
istream& operator>>(istream& is, Mat<Mint>& A) {
for (int i : {0, 1}) {
for (int j : {0, 1}) {
is >> A[i][j].v;
}
}
return is;
}
long long tmod(long long a, long long b) {
if (b < 0) return -tmod(-a, -b);
return (a %= b) < 0 ? a + b : a;
}
long long tdiv(long long a, long long b) { return (a - tmod(a, b)) / b; }
long long mod_pow(long long a, long long n, long long p) {
assert(n >= 0);
a = tmod(a, p);
long long res = 1;
while (n) {
if (n & 1) (res *= a) %= p;
(a *= a) %= p;
n >>= 1;
}
return res;
}
long long mod_inv(long long a, long long p) {
a = tmod(a, p);
long long b = p, x = 1, u = 0;
while (b) {
long long q = a / b;
swap(a -= q * b, b);
swap(x -= q * u, u);
}
return a == 1 ? tmod(x, p) : -1;
}
long long mod_sqrt(long long a, long long p) {
if (!a or p == 2) return a;
if (mod_pow(a, (p - 1) / 2, p) != 1) {
return -1;
}
long long d = p - 1;
while (d % 2 == 0) d /= 2;
long long x = mod_pow(a, (d + 1) / 2, p), y = mod_pow(a, d, p), z = -1;
for (long long g = 2; g < p; ++g) if (mod_pow(g, (p - 1) / 2, p) != 1) {
z = mod_pow(g, d, p);
break;
}
for (int k = __lg((p - 1) / d) - 1; k; --k) {
if (mod_pow(y, 1 << (k - 1), p) != 1) {
x = x * z % p;
y = y * z % p * z % p;
}
z = z * z % p;
}
return min(x, p - x);
}
bool pre(vector<long long>& a, vector<long long>& p) {
assert(a.size() == p.size());
int n = a.size();
for (int i = 0; i < n; ++i) {
a[i] = tmod(a[i], p[i]);
}
for (int i = 0; i < n; ++i) for (int j = i + 1; j < n; ++j) {
long long d = __gcd(p[i], p[j]);
if (a[i] % d != a[j] % d) return false;
p[i] /= d;
p[j] /= d;
while (true) {
long long e = __gcd(d, p[j]);
if (e == 1) break;
p[j] *= e;
d /= e;
}
p[i] *= d;
a[i] %= p[i];
a[j] %= p[j];
}
return true;
}
long long CRT(const vector<long long>& a, const vector<long long>& p) {
int n = a.size();
long long x = 0;
vector<long long> y(n);
long long prod = 1;
for (int i = 0; i < n; ++i) {
y[i] = tmod(a[i] - x, p[i]);
for (int j = 0; j < i; ++j) {
(y[i] *= mod_inv(p[j], p[i])) %= p[i];
}
x += prod * y[i];
prod *= p[i];
}
return x;
}
Cint sqrt(Mint a) {
auto r = mod_sqrt(a.v, mod);
if (r != -1) {
return {r, 0};
}
return {0, mod_sqrt((a / alpha).v, mod)};
}
long long ord(Cint a) {
set<long long> se;
for (long long n : {mod - 1, mod + 1}) {
for (long long i = 2; i * i <= n; ++i) {
while (n % i == 0) {
se.insert(i);
n /= i;
}
}
if (n >= 2) {
se.insert(n);
}
}
long long res = mod * mod - 1;
for (long long p : se) {
while (res % p == 0 and a.pow(res / p) == 1) {
res /= p;
}
}
return res;
}
long long log(Cint a, Cint b) {
long long m = ceil(sqrt(mod + 1));
map<Cint, long long> mp;
Cint t = 1;
for (long long j = 0; j < m; ++j) {
mp[t] = j;
t *= a;
}
a = a.pow(m).inv(), t = 1;
for (long long i = 0; i < (mod + 1 + m - 1) / m; ++i) {
if (mp.count(t * b)) {
return i * m + mp[t * b];
}
t *= a;
}
return -1;
}
long long tlog(Cint a, Cint b) {
long long x = log(a.pow(mod + 1), b.pow(mod + 1));
long long y = log(a.pow(mod - 1), b.pow(mod - 1));
vector<long long> r{x, y}, p{mod - 1, mod + 1};
if (not pre(r, p)) {
return -1;
}
return CRT(r, p);
}
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cin >> mod;
Mat<Cint> A, B;
for (int i : {0, 1}) {
for (int j : {0, 1}) {
cin >> A[i][j].a.v;
}
}
for (int i : {0, 1}) {
for (int j : {0, 1}) {
cin >> B[i][j].a.v;
}
}
Cint tr = A[0][0] + A[1][1];
Cint det = A[0][0] * A[1][1] - A[0][1] * A[1][0];
Cint d = tr * tr - 4 * det;
Cint t = sqrt(d.a);
Cint lambda[2];
lambda[0] = (tr + t) / 2;
lambda[1] = (tr - t) / 2;
Mat<Cint> P;
for (int k = 0; k < 2; ++k) {
auto nA = A;
for (int i : {0, 1}) {
nA[i][i] -= lambda[k];
}
if (nA[0][1] == Cint(0, 0)) {
P[1][k] = {1, 0};
} else {
P[0][k] = {1, 0};
P[1][k] = -nA[0][0] / nA[0][1];
}
}
Mat<Cint> D{lambda[0], 0, 0, lambda[1]};
B = inv(P) * B * P;
if (!(B[0][1] == 0) or !(B[1][0] == 0)) {
cout << "-1\n";
return 0;
}
DEBUG(pow(D, 334));
DEBUG(B);
vector<long long> x(2), ps(2);
for (int k : {0, 1}) {
x[k] = tlog(D[k][k], B[k][k]);
DEBUG(k, x[k]);
if (x[k] == -1) {
cout << "-1\n";
return 0;
}
ps[k] = ord(D[k][k]);
x[k] %= ps[k];
}
if (not pre(x, ps)) {
cout << "-1\n";
return 0;
}
DEBUG(ps);
long long res = CRT(x, ps);
if (res == 0) {
res += ps[0] * ps[1];
}
cout << res << '\n';
}
risujiroh