結果
| 問題 |
No.944 煎っぞ!
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2019-12-14 00:45:14 |
| 言語 | Lua (LuaJit 2.1.1734355927) |
| 結果 |
AC
|
| 実行時間 | 24 ms / 3,000 ms |
| コード長 | 2,215 bytes |
| コンパイル時間 | 107 ms |
| コンパイル使用メモリ | 5,376 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-06-27 23:48:00 |
| 合計ジャッジ時間 | 1,903 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 35 |
ソースコード
local mce, mfl, msq, mmi, mma, mab = math.ceil, math.floor, math.sqrt, math.min, math.max, math.abs
local function getprimes(x)
local primes = {}
local allnums = {}
for i = 1, x do allnums[i] = true end
for i = 2, x do
if allnums[i] then
table.insert(primes, i)
local lim = mfl(x / i)
for j = 2, lim do
allnums[j * i] = false
end
end
end
return primes
end
local function getdivisorparts(x, primes)
local prime_num = #primes
local tmp = {}
local lim = mce(msq(x))
local primepos = 1
local dv = primes[primepos]
while(primepos <= prime_num and dv <= lim) do
if(x % dv == 0) then
local asdf = {}
asdf.p = dv
asdf.cnt = 1
x = x / dv
while(x % dv == 0) do
x = x / dv
asdf.cnt = asdf.cnt + 1
end
table.insert(tmp, asdf)
lim = mce(msq(x))
end
if(primepos == prime_num) then break end
primepos = primepos + 1
dv = primes[primepos]
end
if(x ~= 1) then
local asdf = {}
asdf.p, asdf.cnt = x, 1
table.insert(tmp, asdf)
end
return tmp
end
local function getdivisor(divisorparts)
local t = {}
local pat = 1
local len = #divisorparts
local allpat = 1
for i = 1, len do
allpat = allpat * (1 + divisorparts[i].cnt)
end
for t_i_pat = 0, allpat - 1 do
local div = allpat
local i_pat = t_i_pat
local ret = 1
for i = 1, len do
div = mfl(div / (divisorparts[i].cnt + 1))
local mul = mfl(i_pat / div)
i_pat = i_pat % div
for j = 1, mul do
ret = ret * divisorparts[i].p
end
end
table.insert(t, ret)
end
table.sort(t)
return t
end
local n = io.read("*n")
local a = {}
local sum = 0
for i = 1, n do
a[i] = io.read("*n")
sum = sum + a[i]
end
local function solve(x)
local cnt = 0
local val = 0
for i = 1, n do
val = val + a[i]
if val == x then
cnt = cnt + 1
val = 0
elseif x < val then
return 0
end
end
return cnt
end
local primes = getprimes(mce(msq(sum)))
local divps = getdivisorparts(sum, primes)
local divs = getdivisor(divps)
for i = 1, #divs do
local cnt = solve(divs[i])
if 0 < cnt then
print(cnt)
break
end
end