結果

問題 No.922 東北きりきざむたん
ユーザー f1b_maxbl00df1b_maxbl00d
提出日時 2019-12-17 00:58:39
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 8,862 bytes
コンパイル時間 2,527 ms
コンパイル使用メモリ 160,816 KB
実行使用メモリ 57,192 KB
最終ジャッジ日時 2024-07-02 20:58:48
合計ジャッジ時間 10,545 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
10,624 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 3 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 3 ms
5,376 KB
testcase_07 AC 3 ms
5,376 KB
testcase_08 AC 3 ms
5,376 KB
testcase_09 AC 107 ms
24,400 KB
testcase_10 AC 34 ms
7,244 KB
testcase_11 AC 77 ms
17,224 KB
testcase_12 AC 116 ms
41,924 KB
testcase_13 AC 34 ms
12,300 KB
testcase_14 AC 189 ms
41,380 KB
testcase_15 AC 121 ms
47,716 KB
testcase_16 AC 173 ms
23,960 KB
testcase_17 AC 166 ms
23,736 KB
testcase_18 AC 169 ms
23,768 KB
testcase_19 AC 163 ms
24,124 KB
testcase_20 AC 171 ms
23,948 KB
testcase_21 AC 169 ms
27,952 KB
testcase_22 AC 170 ms
27,444 KB
testcase_23 AC 205 ms
22,972 KB
testcase_24 AC 226 ms
23,160 KB
testcase_25 AC 134 ms
22,680 KB
testcase_26 AC 118 ms
22,832 KB
testcase_27 AC 128 ms
22,964 KB
testcase_28 AC 198 ms
57,192 KB
testcase_29 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <vector>
#include <limits.h>
#include <algorithm>
#include <string>
#include <math.h>
#include <limits.h>
#include <queue>
#include <map>
#include <set>
#include <iomanip>
#include <bitset>
#include <cassert>
#include <random>
#include <functional>
#include <stack>
#include <iomanip>
#include <cassert>
//#include <boost/multiprecision/cpp_int.hpp>
#include <complex>
#include <cstdio>
#include <list>
#include <bitset>

//< in.txt > out.txt
using namespace std;
//std::ios::sync_with_stdio(false);
//std::cin.tie(0);
const long long MOD = 1e9 + 7;
typedef long long ll;
typedef long double ld;
typedef pair<ll, ll> pll;
typedef pair<ld, ll> pdl;
typedef pair<ld, ld> pdd;
typedef vector<ll> VLL;
typedef vector<VLL> VVLL;
//typedef boost::multiprecision::cpp_int bigint;

//unionFind
class unionFind {
private:
	int* p;   //親配列のポインタ
	int* rank;
	int N;   //要素数
	int* check;   //同値な要素の数
public:
	unionFind(int);   //コンストラクタ
	int parent(int);   //親要素を返す
	void unit(int, int);   //2要素をつなぐ
	int operator[](int);   //parentの省略形
	~unionFind();
	int size(int n);   //頂点nと同値な要素数を返す
};

unionFind::unionFind(int n) {
	N = n;
	p = new int[N];
	rank = new int[N];
	for (int i = 0; i < N; i++) {
		p[i] = i;
		rank[i] = 0;
	}
	check = new int[N];
	for (int n = 0; n < N; n++)check[n] = 1;
	return;
}

int unionFind::parent(int n) {
	if (n < 0 || n >= N)return -1;
	if (p[n] == n)return n;   //自分が一番上の親
	return p[n] = parent(p[n]);   //つなぎ直しと上にたどる操作
}

int unionFind::operator[](int n) {
	return parent(n);
}

void unionFind::unit(int x, int y) {
	x = parent(x), y = parent(y);
	if (x == y)return;   //根が同じだから何もせずに帰る
	int sum = check[x] + check[y];
	if (rank[x] < rank[y])p[x] = y;
	else {
		p[y] = x;
		if (rank[x] == rank[y])rank[x]++;
	}
	check[x] = sum;
	check[y] = sum;
	return;
}

unionFind::~unionFind() {
	delete(p);
	delete(rank);
	delete(check);
	return;
}

int unionFind::size(int n) {
	return check[parent(n)];
}


ll N,M,Q;
vector<pll> edges0;
struct tp {
	ll tree;
	ll p;
};
vector<tp> pointsconv;
vector<VVLL> childs;
VVLL parents;
ll T;

void composetrees() {
	unionFind UF(N);
	for (ll m = 0; m < M; m++) UF.unit(edges0[m].first, edges0[m].second);
	struct pq {
		ll tree, p, ord;
	};
	vector<pq> V(N);
	for (ll n = 0; n < N; n++) {
		V[n].ord = n;
		V[n].tree = UF[n];
	}
	sort(V.begin(), V.end(), [](pq a, pq b) {
		if (a.tree == b.tree)return a.ord < b.ord;
		return a.tree < b.tree;
	});
	V[0].p = 0;
	ll curt = 0;
	for (ll n = 1; n < N; n++) {
		if (V[n].tree == V[n - 1].tree) {
			V[n].tree = V[n - 1].tree;
			V[n].p = V[n - 1].p + 1;
			V[n - 1].tree = curt;
		}
		else {
			V[n - 1].tree = curt;
			curt++;
			V[n].p = 0;
		}
	}
	V.back().tree = curt;
	T = V.back().tree + 1;
	pointsconv.resize(N);
	for (ll n = 0; n < N; n++) {
		pointsconv[V[n].ord] = { V[n].tree,V[n].p };
	}
	vector<VVLL> edges(T);
	childs.resize(T);
	parents.resize(T);
	for (ll n = 0; n < N; n++) {
		edges[V[n].tree].push_back(VLL());
		childs[V[n].tree].push_back(VLL());
		parents[V[n].tree].push_back(-2);
	}
	for (ll m = 0; m < M; m++) {
		ll tree = pointsconv[edges0[m].first].tree;
		ll s = pointsconv[edges0[m].first].p;
		ll t = pointsconv[edges0[m].second].p;
		edges[tree][s].push_back(t);
		edges[tree][t].push_back(s);
	}
	for (ll t = 0; t < T; t++) {
		queue<pll> q;
		q.push(pll(0, -1));
		while (!q.empty()) {
			ll cur = q.front().first;
			ll p = q.front().second;
			q.pop();
			parents[t][cur] = p;
			for (ll c : edges[t][cur]) {
				if (c == p)continue;
				childs[t][cur].push_back(c);
				q.push(pll(c, cur));
			}
		}
	}
}

void doublingConstruct(ll N, vector<ll>& parents, vector<vector<ll>>& doubling) {
	doubling.push_back(parents);
	while (true) {
		vector<ll> temp(N, -1);
		vector<ll>& back = doubling.back();
		bool flag = false;
		for (ll n = 0; n < N; n++) {
			if (doubling.back()[n] == -1)continue;
			temp[n] = back[back[n]];
			if (temp[n] != -1)flag = true;
		}
		if (!flag)break;
		doubling.push_back(temp);
	}
}

ll LowestCommonAncestor(ll N, ll root, vector<ll>& parents, vector<ll>& rank, vector<vector<ll>>& doubling, ll c1, ll c2) {
	if (c1 == c2)return c1;
	if (rank[c1] > rank[c2])return LowestCommonAncestor(N, root, parents, rank, doubling, c2, c1);
	if (rank[c1] != rank[c2]) {
		ll dif = rank[c2] - rank[c1];
		ll p = 0;
		while (dif >= (1 << p)) {
			if ((dif & (1 << p)))c2 = doubling[p][c2];
			p++;
		}
		if (c1 == c2)return c1;
	}
	ll log = doubling.size() - 1;
	for (; log >= 0; log--) {
		if (c1 == c2)break;
		if (doubling[log][c1] != doubling[log][c2]) {
			ll temp1 = doubling[log][c1];
			ll temp2 = doubling[log][c2];
			if (temp1 != temp2) {
				c1 = temp1;
				c2 = temp2;
			}
		}
	}
	return parents[c1];
}

//木の各要素の深さ(根からの距離)を求める
void setDepth(ll N, ll root, vector<vector<ll>>& childs, vector<ll>& rank) {
	rank.resize(N, -1);
	queue<pll> q;
	q.push(pll(root, 0));
	while (!q.empty()) {
		ll cur = q.front().first;
		ll dist = q.front().second;
		rank[cur] = dist;
		q.pop();
		for (ll child : childs[cur]) {
			if (child == -1)continue;
			if (rank[child] != -1)continue;
			q.push(pll(child, dist + 1));
		}
	}
}

VVLL wv;
VVLL W, WW;
VVLL X, XX;

void WXDP(ll tree, ll n) {
	ll wans = 0, xans = 0;
	for (ll c = 0; c < childs[tree][n].size(); c++) {
		WXDP(tree, childs[tree][n][c]);
		wans += W[tree][childs[tree][n][c]];
	}
	wans += wv[tree][n];
	W[tree][n] = wans;
	for (ll c = 0; c < childs[tree][n].size(); c++) {
		xans += X[tree][childs[tree][n][c]] + W[tree][childs[tree][n][c]];
	}
	X[tree][n] = xans;
}

void WWXXDP(ll tree, ll n) {
	if (n == 0) {
		WW[tree][n] = wv[tree][n];
		XX[tree][n] = 0;
	}
	if (childs[tree][n].size() == 0)return;
	VLL forward(childs[tree][n].size());
	forward[0] = W[tree][childs[tree][n][0]];
	for (ll c = 1; c < childs[tree][n].size(); c++) {
		forward[c] = forward[c - 1] + W[tree][childs[tree][n][c]];
	}
	VLL backward(childs[tree][n].size());
	backward.back() = W[tree][childs[tree][n].back()];
	for (ll c = (ll)childs[tree][n].size() - 2; c >= 0; c--) {
		backward[c] = backward[c + 1]+ W[tree][childs[tree][n][c]];
	}
	for (ll c = 0; c < childs[tree][n].size(); c++) {
		ll temp = 0;
		if (c > 0)temp += forward[c - 1];
		if (c < childs[tree][n].size() - 1)temp += backward[c+1];
		temp += WW[tree][n]+wv[tree][childs[tree][n][c]];
		WW[tree][childs[tree][n][c]] = temp;
	}
	forward[0] = X[tree][childs[tree][n][0]] + 2 * W[tree][childs[tree][n][0]];
	for (ll c = 1; c < childs[tree][n].size(); c++) {
		forward[c] = forward[c-1]+ X[tree][childs[tree][n][c]] + 2 * W[tree][childs[tree][n][c]];
	}
	backward.back() = X[tree][childs[tree][n].back()] + 2 * W[tree][childs[tree][n].back()];
	for (ll c = (ll)childs[tree][n].size() - 2; c >= 0; c--) {
		backward[c] = backward[c+1]+ X[tree][childs[tree][n][c]] + 2 * W[tree][childs[tree][n][c]];
	}
	for (ll c = 0; c < childs[tree][n].size(); c++) {
		ll temp = 0;
		if (c > 0)temp += forward[c - 1];
		if (c < childs[tree][n].size() - 1)temp += backward[c + 1];
		temp += XX[tree][n] + WW[tree][n];
		XX[tree][childs[tree][n][c]] = temp;
	}
	for (ll c = 0; c < childs[tree][n].size(); c++) {
		WWXXDP(tree,childs[tree][n][c]);
	}
}

int main() {
	std::ios::sync_with_stdio(false);
	std::cin.tie(0);
	cin >> N >> M >> Q;
	edges0.resize(M);
	for (ll m = 0; m < M; m++) {
		cin >> edges0[m].first >> edges0[m].second;
		edges0[m].first--;
		edges0[m].second--;
	}
	composetrees();
	vector<VVLL> doublings(T);
	for (ll t = 0; t < T; t++) {
		doublingConstruct(parents[t].size(), parents[t], doublings[t]);
	}
	VVLL ranks(T);
	for (ll t = 0; t < T; t++) setDepth(parents[t].size(), 0, childs[t], ranks[t]);
	ll ans = 0;
	wv.resize(T);
	W.resize(T);
	WW.resize(T);
	X.resize(T);
	XX.resize(T);
	for (ll t = 0; t < T; t++) {
		wv[t].resize(parents[t].size(),0);
		W[t].resize(parents[t].size(), -1);
		WW[t].resize(parents[t].size(), -1);
		X[t].resize(parents[t].size(), -1);
		XX[t].resize(parents[t].size(), -1);
	}
	for (ll q = 0; q < Q; q++) {
		tp s, t;
		cin >> s.p >> t.p;
		s.p--;
		t.p--;
		s = pointsconv[s.p];
		t = pointsconv[t.p];
		if (s.tree == t.tree) {
			ll p = LowestCommonAncestor(parents[s.tree].size(), 0, parents[s.tree], ranks[s.tree], doublings[s.tree], s.p, t.p);
			ll sc = s.p;
			while (sc != p) {
				sc = parents[s.tree][sc];
				ans++;
			}
			ll tc = t.p;
			while (tc != p) {
				tc = parents[t.tree][tc];
				ans++;
			}
		}
		else {
			wv[t.tree][t.p]++;
			wv[s.tree][s.p]++;
		}
	}
	for (ll t = 0; t < T; t++) {
		WXDP(t, 0);
		WWXXDP(t, 0);
	}
	for (ll t = 0; t < T; t++) {
		ll temp = LLONG_MAX;
		for (ll n = 0; n < parents[t].size(); n++) {
			temp = min(temp, X[t][n]+XX[t][n]);
		}
		ans += temp;
	}
	cout << ans << "\n";
	return 0;
}
0