結果

問題 No.956 Number of Unbalanced
ユーザー PachicobuePachicobue
提出日時 2019-12-19 10:25:16
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 8,580 bytes
コンパイル時間 2,286 ms
コンパイル使用メモリ 209,256 KB
実行使用メモリ 8,092 KB
最終ジャッジ日時 2024-07-07 01:01:21
合計ジャッジ時間 3,995 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 AC 14 ms
7,828 KB
testcase_14 WA -
testcase_15 AC 18 ms
7,936 KB
testcase_16 WA -
testcase_17 AC 16 ms
7,936 KB
testcase_18 WA -
testcase_19 AC 17 ms
8,092 KB
testcase_20 WA -
testcase_21 WA -
testcase_22 AC 17 ms
8,064 KB
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
// created [2019/12/19] 00:00:51
#pragma GCC diagnostic ignored "-Wsign-compare"
#pragma GCC diagnostic ignored "-Wsign-conversion"

using i32   = int32_t;
using i64   = int64_t;
using u32   = uint32_t;
using u64   = uint64_t;
using uint  = unsigned int;
using usize = std::size_t;
using ll    = long long;
using ull   = unsigned long long;
using ld    = long double;
template<typename T, usize n>
using arr = T (&)[n];
template<typename T, usize n>
using c_arr = const T (&)[n];
template<typename T> constexpr T popcount(const T u) { return u ? static_cast<T>(__builtin_popcountll(static_cast<u64>(u))) : static_cast<T>(0); }
template<typename T> constexpr T log2p1(const T u) { return u ? static_cast<T>(64 - __builtin_clzll(static_cast<u64>(u))) : static_cast<T>(0); }
template<typename T> constexpr T msbp1(const T u) { return log2p1(u); }
template<typename T> constexpr T lsbp1(const T u) { return __builtin_ffsll(u); }
template<typename T> constexpr T clog(const T u) { return u ? log2p1(u - 1) : static_cast<T>(u); }
template<typename T> constexpr bool ispow2(const T u) { return u and (static_cast<u64>(u) & static_cast<u64>(u - 1)) == 0; }
template<typename T> constexpr T ceil2(const T u) { return static_cast<T>(1) << clog(u); }
template<typename T> constexpr T floor2(const T u) { return u == 0 ? static_cast<T>(0) : static_cast<T>(1) << (log2p1(u) - 1); }
template<typename T> constexpr bool btest(const T mask, const usize ind) { return static_cast<bool>((static_cast<u64>(mask) >> ind) & static_cast<u64>(1)); }
template<typename T> void bset(T& mask, const usize ind) { mask |= (static_cast<T>(1) << ind); }
template<typename T> void breset(T& mask, const usize ind) { mask &= ~(static_cast<T>(1) << ind); }
template<typename T> void bflip(T& mask, const usize ind) { mask ^= (static_cast<T>(1) << ind); }
template<typename T> void bset(T& mask, const usize ind, const bool b) { (b ? bset(mask, ind) : breset(mask, ind)); }
template<typename T> constexpr T bcut(const T mask, const usize ind) { return ind == 0 ? static_cast<T>(0) : static_cast<T>((static_cast<u64>(mask) << (64 - ind)) >> (64 - ind)); }
template<typename T> bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); }
template<typename T> bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); }
constexpr unsigned int mod                  = 1000000007;
template<typename T> constexpr T inf_v      = std::numeric_limits<T>::max() / 4;
template<typename Real> constexpr Real pi_v = Real{3.141592653589793238462643383279502884};
auto mfp = [](auto&& f) { return [=](auto&&... args) { return f(f, std::forward<decltype(args)>(args)...); }; };

template<typename T>
T in()
{
    T v;
    return std::cin >> v, v;
}
template<typename T, typename Uint, usize n, usize i>
T in_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type) { return in<T>(); }
template<typename T, typename Uint, usize n, usize i>
auto in_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type& szs)
{
    const usize s = (usize)szs[i];
    std::vector<decltype(in_v<T, Uint, n, i + 1>(szs))> ans(s);
    for (usize j = 0; j < s; j++) { ans[j] = in_v<T, Uint, n, i + 1>(szs); }
    return ans;
}
template<typename T, typename Uint, usize n>
auto in_v(c_arr<Uint, n> szs) { return in_v<T, Uint, n, 0>(szs); }
template<typename... Types>
auto in_t() { return std::tuple<std::decay_t<Types>...>{in<Types>()...}; }
struct io_init
{
    io_init()
    {
        std::cin.tie(nullptr), std::ios::sync_with_stdio(false);
        std::cout << std::fixed << std::setprecision(20);
    }
    void clear()
    {
        std::cin.tie(), std::ios::sync_with_stdio(true);
    }
} io_setting;

template<typename T>
int out(const T& v) { return std::cout << v, 0; }
template<typename T>
int out(const std::vector<T>& v)
{
    for (usize i = 0; i < v.size(); i++) {
        if (i > 0) { std::cout << ' '; }
        out(v[i]);
    }
    return std::cout << "\n", 0;
}
template<typename T1, typename T2>
int out(const std::pair<T1, T2>& v) { return out(v.first), std::cout << ' ', out(v.second), 0; }
template<typename T, typename... Args>
int out(const T& v, const Args... args) { return out(v), std::cout << ' ', out(args...), 0; }
template<typename... Args>
int outln(const Args... args) { return out(args...), std::cout << '\n', 0; }
template<typename... Args>
void outel(const Args... args) { return out(args...), std::cout << std::endl, 0; }
#    define SHOW(...) static_cast<void>(0)
constexpr ull TEN(const usize n) { return n == 0 ? 1ULL : TEN(n - 1) * 10ULL; }

template<typename T, typename Uint, usize n, usize i>
auto make_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type, const T& v = T{}) { return v; }
template<typename T, typename Uint, usize n, usize i>
auto make_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type szs, const T& v = T{})
{
    const usize s = (usize)szs[i];
    return std::vector<decltype(make_v<T, Uint, n, i + 1>(szs, v))>(s, make_v<T, Uint, n, i + 1>(szs, v));
}
template<typename T, typename Uint, usize n>
auto make_v(c_arr<Uint, n> szs, const T& t = T{}) { return make_v<T, Uint, n, 0>(szs, t); }

template<typename Element = ll>
class fenwick
{
public:
    using value_type = Element;
    fenwick(const usize sz, const value_type initial = value_type{}) : sz{sz}, cap{ceil2(sz)}, val(cap + 1, 0)
    {
        if (initial != value_type{}) {
            std::fill(val.begin() + 1, val.end(), initial);
            for (usize x = 1; x < cap; x++) { val[x + (x & -x)] += val[x]; }
        }
    }
    template<typename InIt>
    fenwick(const InIt first, const InIt last) : sz{static_cast<usize>(std::distance(first, last))}, cap{ceil2(sz)}, val(cap + 1, 0)
    {
        std::copy(first, last, val.begin() + 1);
        for (usize x = 1; x < cap; x++) { val[x + (x & -x)] += val[x]; }
    }
    void add(const usize a, const value_type& v)
    {
        assert(a < sz);
        for (usize ind = a + 1; ind <= cap; ind += ind & (-ind)) { val[ind] += v; }
    }
    value_type sum(const usize a) const
    {
        assert(a <= sz);
        value_type sum{};
        for (usize ind = a; ind != 0; ind &= ind - 1) { sum += val[ind]; }
        return sum;
    }
    value_type sum(const usize l, const usize r) const { return assert(l < r), assert(r <= sz), sum(r) - sum(l); }
    usize size() const { return sz; }
    friend std::ostream& operator<<(std::ostream& os, const fenwick& fw)
    {
        os << "[";
        for (usize i = 0; i < fw.sz; i++) { os << fw.sum(i, i + 1) << (i + 1 == fw.sz ? "" : ","); }
        return (os << "]\n");
    }

private:
    const usize sz, cap;
    std::vector<value_type> val;
};
int main()
{
    const auto N      = in<int>();
    const auto A      = in_v<int>({N});
    constexpr int MAX = 100000;
    std::vector<std::vector<int>> ps(MAX + 1);
    for (int i = 0; i < N; i++) { ps[A[i]].push_back(i); }
    constexpr int L = 5000;  // N^(2/3)*(log{N})^(1/3)
    ll ans          = 0;
    for (int a = 1; a <= MAX; a++) {
        const int s = ps[a].size();
        if (s == 0) { continue; }
        if (s <= L) {
            // L^2
            for (int i = 0; i < s; i++) {
                for (int j = i; j < s; j++) {
                    const int len = ps[a][j] - ps[a][i] + 1;
                    const int cnt = j - i + 1;
                    if (len >= cnt * 2) { continue; }
                    const ll s = cnt * 2 - 1 - len;
                    ll l   = ps[a][i] - (i == 0 ? -1 : ps[a][i - 1]) - 1;
                    ll r   = (j == s - 1 ? N : ps[a][j + 1]) - ps[a][j] - 1;
                    chmin(l,s),chmin(r,s);
                    if(s<0 or l<0 or r<0){continue;}
                    ll plus = 0;
                    if (l+r<=s) {
                        plus += (l+1)*(r+1);
                    } else {
                        plus += (s+1)*(s+2)/2;
                        plus -= std::max(0LL,(s-l+1)*(s-l)/2);
                        plus -= std::max(0LL,(s-r+1)*(s-r)/2);
                    }
                    ans+=plus;
                }
            }
        } else {
            // N^2log{N}/L
            std::vector<int> s(N + 1, 0);
            for (int i = 0; i < N; i++) { s[i + 1] = (A[i] == a ? 1 : -1); }
            for (int i = 1; i <= N; i++) { s[i] += s[i - 1]; }
            for (int i = 0; i <= N; i++) { s[i] += N; }
            fenwick<int> bit(2 * N + 1);
            for (int i = 0; i <= N; i++) {
                bit.add(s[i], 1);
                if (s[i] > 0) { ans += bit.sum(s[i]); }
            }
        }
    }
    outln(ans);
    return 0;
}
0