結果

問題 No.957 植林
ユーザー 👑 emthrmemthrm
提出日時 2019-12-20 01:35:05
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 5,265 bytes
コンパイル時間 1,308 ms
コンパイル使用メモリ 140,752 KB
実行使用メモリ 10,752 KB
最終ジャッジ日時 2024-07-07 02:22:52
合計ジャッジ時間 4,372 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 2 ms
6,812 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
testcase_37 WA -
testcase_38 WA -
testcase_39 WA -
testcase_40 WA -
testcase_41 AC 12 ms
10,624 KB
testcase_42 AC 188 ms
10,752 KB
testcase_43 AC 18 ms
10,624 KB
testcase_44 AC 16 ms
10,624 KB
testcase_45 AC 2 ms
6,940 KB
testcase_46 AC 2 ms
6,940 KB
testcase_47 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <bitset>
#include <cassert>
#include <cctype>
#include <chrono>
#define _USE_MATH_DEFINES
#include <cmath>
#include <cstring>
#include <ctime>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace std;

#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()

const int INF = 0x3f3f3f3f;
const long long LINF = 0x3f3f3f3f3f3f3f3fLL;
const double EPS = 1e-8;
const int MOD = 1000000007;
// const int MOD = 998244353;
const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
// const int dy[] = {1, 1, 0, -1, -1, -1, 0, 1},
//           dx[] = {0, -1, -1, -1, 0, 1, 1, 1};

struct IOSetup {
  IOSetup() {
    cin.tie(nullptr);
    ios_base::sync_with_stdio(false);
    cout << fixed << setprecision(20);
    cerr << fixed << setprecision(10);
  }
} iosetup;
/*-------------------------------------------------*/
template <typename T, typename U>
struct PrimalDual {
  using Pui = pair<U, int>;

  struct Edge {
    int dst, rev;
    T cap;
    U cost;
    Edge(int dst, T cap, U cost, int rev) : dst(dst), cap(cap), cost(cost), rev(rev) {}
  };

  vector<vector<Edge> > graph;

  PrimalDual(int n, T TINF, U UINF) : n(n), TINF(TINF), UINF(UINF), graph(n), prev_v(n, -1), prev_e(n, -1), potential(n, 0), dist(n) {}

  void add_edge(int src, int dst, T cap, U cost) {
    has_negative_edge |= cost < 0;
    graph[src].emplace_back(dst, cap, cost, graph[dst].size());
    graph[dst].emplace_back(src, 0, -cost, graph[src].size() - 1);
  }

  U minimum_cost_flow(int s, int t, T flow) {
    U res = 0;
    if (has_negative_edge) {
      bellman_ford(s);
      if (dist[t] == UINF) return UINF;
      res += calc(s, t, flow);
    }
    while (flow > 0) {
      dijkstra(s);
      if (dist[t] == UINF) return UINF;
      res += calc(s, t, flow);
    }
    return res;
  }

  U minimum_cost_flow(int s, int t) {
    U res = 0;
    bellman_ford(s);
    if (potential[t] >= 0 || dist[t] == UINF) return res;
    T tmp = TINF;
    res += calc(s, t, tmp);
    while (true) {
      dijkstra(s);
      if (potential[t] >= 0 || dist[t] == UINF) return res;
      res += calc(s, t, tmp);
    }
  }

  pair<T, U> min_cost_max_flow(int s, int t, T flow) {
    T mx = flow;
    U cost = 0;
    if (has_negative_edge) {
      bellman_ford(s);
      if (dist[t] == UINF) return {mx - flow, cost};
      cost += calc(s, t, flow);
    }
    while (flow > 0) {
      dijkstra(s);
      if (dist[t] == UINF) return {mx - flow, cost};
      cost += calc(s, t, flow);
    }
    return {mx - flow, cost};
  }

private:
  int n;
  T TINF;
  U UINF;
  bool has_negative_edge = false;
  vector<int> prev_v, prev_e;
  vector<U> potential, dist;
  priority_queue<Pui, vector<Pui>, greater<Pui> > que;

  void bellman_ford(int s) {
    fill(ALL(dist), UINF);
    dist[s] = 0;
    bool is_updated = true;
    REP(step, n) {
      is_updated = false;
      REP(i, n) if (dist[i] != UINF) {
        REP(j, graph[i].size()) {
          Edge e = graph[i][j];
          if (e.cap > 0 && dist[e.dst] > dist[i] + e.cost) {
            dist[e.dst] = dist[i] + e.cost;
            prev_v[e.dst] = i;
            prev_e[e.dst] = j;
            is_updated = true;
          }
        }
      }
      if (!is_updated) break;
    }
    assert(!is_updated);
    REP(i, n) {
      if (dist[i] != UINF) potential[i] += dist[i];
    }
  }

  void dijkstra(int s) {
    fill(ALL(dist), UINF);
    dist[s] = 0;
    que.emplace(0, s);
    while (!que.empty()) {
      Pui pr = que.top(); que.pop();
      int ver = pr.second;
      if (dist[ver] < pr.first) continue;
      REP(i, graph[ver].size()) {
        Edge e = graph[ver][i];
        U nx = dist[ver] + e.cost + potential[ver] - potential[e.dst];
        if (e.cap > 0 && dist[e.dst] > nx) {
          dist[e.dst] = nx;
          prev_v[e.dst] = ver;
          prev_e[e.dst] = i;
          que.emplace(dist[e.dst], e.dst);
        }
      }
    }
    REP(i, n) {
      if (dist[i] != UINF) potential[i] += dist[i];
    }
  }

  U calc(int s, int t, T &flow) {
    T f = flow;
    for (int v = t; v != s; v = prev_v[v]) f = min(f, graph[prev_v[v]][prev_e[v]].cap);
    flow -= f;
    for (int v = t; v != s; v = prev_v[v]) {
      Edge &e = graph[prev_v[v]][prev_e[v]];
      e.cap -= f;
      graph[v][e.rev].cap += f;
    }
    return potential[t] * f;
  }
};

int main() {
  int h, w; cin >> h >> w;
  vector<vector<int> > g(h, vector<int>(w)); REP(i, h) REP(j, w) cin >> g[i][j];
  vector<int> r(h), c(w);
  REP(i, h) cin >> r[i];
  REP(i, w) cin >> c[i];
  PrimalDual<int, long long> pd(h + w + 2, INF, LINF);
  int s = h + w, t = h + w + 1;
  REP(i, h) {
    long long cost = -r[i];
    REP(j, w) cost += g[i][j];
    pd.add_edge(s, i, 1, cost);
    pd.add_edge(i, t, 1, 0);
  }
  REP(j, w) {
    pd.add_edge(s, h + j, 1, 0);
    long long cost = -c[j];
    REP(i, h) cost += g[i][j];
    pd.add_edge(h + j, t, 1, cost);
  }
  REP(i, h) REP(j, w) pd.add_edge(i, h + j, 1, -g[i][j]);
  cout << -pd.minimum_cost_flow(s, t) << '\n';
  return 0;
}
0