結果

問題 No.957 植林
ユーザー PachicobuePachicobue
提出日時 2019-12-20 04:08:41
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 989 ms / 2,000 ms
コード長 18,229 bytes
コンパイル時間 2,647 ms
コンパイル使用メモリ 220,936 KB
実行使用メモリ 24,032 KB
最終ジャッジ日時 2024-07-07 05:50:28
合計ジャッジ時間 22,914 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 1 ms
6,944 KB
testcase_03 AC 85 ms
20,552 KB
testcase_04 AC 63 ms
19,212 KB
testcase_05 AC 134 ms
21,176 KB
testcase_06 AC 55 ms
22,156 KB
testcase_07 AC 92 ms
20,000 KB
testcase_08 AC 44 ms
15,472 KB
testcase_09 AC 36 ms
15,344 KB
testcase_10 AC 44 ms
16,080 KB
testcase_11 AC 43 ms
15,972 KB
testcase_12 AC 41 ms
15,848 KB
testcase_13 AC 24 ms
12,236 KB
testcase_14 AC 32 ms
15,108 KB
testcase_15 AC 27 ms
13,628 KB
testcase_16 AC 24 ms
12,484 KB
testcase_17 AC 25 ms
12,924 KB
testcase_18 AC 566 ms
20,604 KB
testcase_19 AC 715 ms
21,148 KB
testcase_20 AC 547 ms
21,728 KB
testcase_21 AC 796 ms
22,020 KB
testcase_22 AC 663 ms
22,588 KB
testcase_23 AC 871 ms
23,020 KB
testcase_24 AC 649 ms
23,588 KB
testcase_25 AC 939 ms
24,032 KB
testcase_26 AC 951 ms
23,900 KB
testcase_27 AC 934 ms
23,964 KB
testcase_28 AC 930 ms
24,028 KB
testcase_29 AC 969 ms
24,028 KB
testcase_30 AC 989 ms
24,028 KB
testcase_31 AC 577 ms
20,732 KB
testcase_32 AC 704 ms
21,148 KB
testcase_33 AC 553 ms
21,724 KB
testcase_34 AC 822 ms
22,152 KB
testcase_35 AC 681 ms
22,592 KB
testcase_36 AC 888 ms
23,016 KB
testcase_37 AC 666 ms
23,588 KB
testcase_38 AC 958 ms
24,024 KB
testcase_39 AC 947 ms
24,024 KB
testcase_40 AC 935 ms
24,028 KB
testcase_41 AC 11 ms
10,624 KB
testcase_42 AC 11 ms
10,624 KB
testcase_43 AC 40 ms
24,032 KB
testcase_44 AC 39 ms
24,028 KB
testcase_45 AC 2 ms
6,940 KB
testcase_46 AC 2 ms
6,940 KB
testcase_47 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
// created [2019/12/20] 03:56:38
#pragma GCC diagnostic ignored "-Wsign-compare"
#pragma GCC diagnostic ignored "-Wsign-conversion"

using i32   = int32_t;
using i64   = int64_t;
using u32   = uint32_t;
using u64   = uint64_t;
using uint  = unsigned int;
using usize = std::size_t;
using ll    = long long;
using ull   = unsigned long long;
using ld    = long double;
template<typename T, usize n>
using arr = T (&)[n];
template<typename T, usize n>
using c_arr = const T (&)[n];
template<typename T> constexpr T popcount(const T u) { return u ? static_cast<T>(__builtin_popcountll(static_cast<u64>(u))) : static_cast<T>(0); }
template<typename T> constexpr T log2p1(const T u) { return u ? static_cast<T>(64 - __builtin_clzll(static_cast<u64>(u))) : static_cast<T>(0); }
template<typename T> constexpr T msbp1(const T u) { return log2p1(u); }
template<typename T> constexpr T lsbp1(const T u) { return __builtin_ffsll(u); }
template<typename T> constexpr T clog(const T u) { return u ? log2p1(u - 1) : static_cast<T>(u); }
template<typename T> constexpr bool ispow2(const T u) { return u and (static_cast<u64>(u) & static_cast<u64>(u - 1)) == 0; }
template<typename T> constexpr T ceil2(const T u) { return static_cast<T>(1) << clog(u); }
template<typename T> constexpr T floor2(const T u) { return u == 0 ? static_cast<T>(0) : static_cast<T>(1) << (log2p1(u) - 1); }
template<typename T> constexpr bool btest(const T mask, const usize ind) { return static_cast<bool>((static_cast<u64>(mask) >> ind) & static_cast<u64>(1)); }
template<typename T> void bset(T& mask, const usize ind) { mask |= (static_cast<T>(1) << ind); }
template<typename T> void breset(T& mask, const usize ind) { mask &= ~(static_cast<T>(1) << ind); }
template<typename T> void bflip(T& mask, const usize ind) { mask ^= (static_cast<T>(1) << ind); }
template<typename T> void bset(T& mask, const usize ind, const bool b) { (b ? bset(mask, ind) : breset(mask, ind)); }
template<typename T> constexpr T bcut(const T mask, const usize ind) { return ind == 0 ? static_cast<T>(0) : static_cast<T>((static_cast<u64>(mask) << (64 - ind)) >> (64 - ind)); }
template<typename T> bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); }
template<typename T> bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); }
constexpr unsigned int mod                  = 1000000007;
template<typename T> constexpr T inf_v      = std::numeric_limits<T>::max() / 4;
template<typename Real> constexpr Real pi_v = Real{3.141592653589793238462643383279502884};
auto mfp = [](auto&& f) { return [=](auto&&... args) { return f(f, std::forward<decltype(args)>(args)...); }; };

template<typename T>
T in()
{
    T v;
    return std::cin >> v, v;
}
template<typename T, typename Uint, usize n, usize i>
T in_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type) { return in<T>(); }
template<typename T, typename Uint, usize n, usize i>
auto in_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type& szs)
{
    const usize s = (usize)szs[i];
    std::vector<decltype(in_v<T, Uint, n, i + 1>(szs))> ans(s);
    for (usize j = 0; j < s; j++) { ans[j] = in_v<T, Uint, n, i + 1>(szs); }
    return ans;
}
template<typename T, typename Uint, usize n>
auto in_v(c_arr<Uint, n> szs) { return in_v<T, Uint, n, 0>(szs); }
template<typename... Types>
auto in_t() { return std::tuple<std::decay_t<Types>...>{in<Types>()...}; }
struct io_init
{
    io_init()
    {
        std::cin.tie(nullptr), std::ios::sync_with_stdio(false);
        std::cout << std::fixed << std::setprecision(20);
    }
    void clear()
    {
        std::cin.tie(), std::ios::sync_with_stdio(true);
    }
} io_setting;

template<typename T>
int out(const T& v) { return std::cout << v, 0; }
template<typename T>
int out(const std::vector<T>& v)
{
    for (usize i = 0; i < v.size(); i++) {
        if (i > 0) { std::cout << ' '; }
        out(v[i]);
    }
    return std::cout << "\n", 0;
}
template<typename T1, typename T2>
int out(const std::pair<T1, T2>& v) { return out(v.first), std::cout << ' ', out(v.second), 0; }
template<typename T, typename... Args>
int out(const T& v, const Args... args) { return out(v), std::cout << ' ', out(args...), 0; }
template<typename... Args>
int outln(const Args... args) { return out(args...), std::cout << '\n', 0; }
template<typename... Args>
void outel(const Args... args) { return out(args...), std::cout << std::endl, 0; }
#    define SHOW(...) static_cast<void>(0)
constexpr ull TEN(const usize n) { return n == 0 ? 1ULL : TEN(n - 1) * 10ULL; }

template<typename T, typename Uint, usize n, usize i>
auto make_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type, const T& v = T{}) { return v; }
template<typename T, typename Uint, usize n, usize i>
auto make_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type szs, const T& v = T{})
{
    const usize s = (usize)szs[i];
    return std::vector<decltype(make_v<T, Uint, n, i + 1>(szs, v))>(s, make_v<T, Uint, n, i + 1>(szs, v));
}
template<typename T, typename Uint, usize n>
auto make_v(c_arr<Uint, n> szs, const T& t = T{}) { return make_v<T, Uint, n, 0>(szs, t); }
using namespace std;
class Stack
{
private:
    const int N, H;
    vector<int> node;

public:
    Stack(const int _N, const int _H) : N(_N), H(_H), node(N + H) { clear(); }
    inline bool empty(const int h) const { return node[N + h] == N + h; }
    inline int top(const int h) const { return node[N + h]; }
    inline void pop(const int h) { node[N + h] = node[node[N + h]]; }
    inline void push(const int h, const int u) { node[u] = node[N + h], node[N + h] = u; }
    inline void clear() { iota(node.begin() + N, node.end(), N); }
};

class List
{
public:
    struct node
    {
        int prev, next;
    };
    const int N, H;
    vector<size_t> sz;
    vector<node> dat;
    List(const int _N, const int _H) : N(_N), H(_H), sz(H, 0), dat(N + H) { clear(); }
    inline size_t size(const int h) const { return sz[h]; }
    inline bool empty(const int h) const { return (sz[h] == 0); }
    inline void insert(const int h, const int u)
    {
        ++sz[h];
        dat[u].prev = dat[N + h].prev, dat[u].next = N + h;
        dat[dat[N + h].prev].next = u, dat[N + h].prev = u;
    }
    inline void erase(const int h, const int u)
    {
        --sz[h];
        dat[dat[u].prev].next = dat[u].next, dat[dat[u].next].prev = dat[u].prev;
    }
    inline void clear()
    {
        for (int i = N; i < N + H; ++i) dat[i].prev = dat[i].next = i;
    }
};

template<typename T> class PushRelabel
{
public:
    struct edge
    {
        const int to, rev;
        T cap;
        edge(const int _to, const int _rev, const T _cap) : to(_to), rev(_rev), cap(_cap) {}
    };

private:
    const int V;
    int s, t, pot_max, checker;
    vector<T> excess;
    vector<int> potential, cur_edge, que;
    List all_ver;
    Stack act_ver;
    int calc_active()
    {
        pot_max = -1;
        for (int i = 0; i < V; ++i) {
            if (potential[i] < V) {
                cur_edge[i] = 0;
                pot_max     = max(potential[i], pot_max);
                all_ver.insert(potential[i], i);
                if (excess[i] > 0 && i != t) act_ver.push(potential[i], i);
            } else {
                potential[i] = V + 1;
            }
        }
        return pot_max;
    }
    void bfs()
    {
        for (int i = 0; i < V; ++i) potential[i] = max(potential[i], V);
        potential[t] = 0;
        int qh = 0, qt = 0;
        for (que[qt++] = t; qh++ < qt;) {
            int u = que[qh - 1];
            for (const edge& e : G[u]) {
                if (potential[e.to] == V && G[e.to][e.rev].cap > 0) {
                    potential[e.to] = potential[u] + 1, que[qt++] = e.to;
                }
            }
        }
    }
    int init()
    {
        potential[s] = V + 1;
        bfs();
        for (edge& e : G[s]) {
            if (potential[e.to] < V) {
                G[e.to][e.rev].cap = e.cap, excess[s] -= e.cap, excess[e.to] += e.cap;
            }
            e.cap = 0;
        }
        return calc_active();
    }
    int global_relabel()
    {
        bfs();
        all_ver.clear(), act_ver.clear();
        return calc_active();
    }
    void gap_relabel(const int u)
    {
        for (int i = potential[u]; i <= pot_max; ++i) {
            for (int id = all_ver.dat[V + i].next; id < V; id = all_ver.dat[id].next) {
                potential[id] = V + 1;
            }
            all_ver.sz[i]           = 0;
            all_ver.dat[V + i].prev = all_ver.dat[V + i].next = V + i;
        }
    }
    int discharge(const int u)
    {
        for (int& i = cur_edge[u]; i < (int)G[u].size(); ++i) {
            edge& e = G[u][i];
            if (potential[u] == potential[e.to] + 1 && e.cap > 0) {
                if (push(u, e)) return potential[u];
            }
        }
        return relabel(u);
    }
    bool push(const int u, edge& e)
    {
        T f         = min(e.cap, excess[u]);
        const int v = e.to;
        e.cap -= f, excess[u] -= f;
        G[v][e.rev].cap += f, excess[v] += f;
        if (excess[v] == f && v != t) act_ver.push(potential[v], v);
        return (excess[u] == 0);
    }
    int relabel(const int u)
    {
        ++checker;
        int prv = potential[u], cur = V;
        for (int i = 0; i < (int)G[u].size(); ++i) {
            const edge& e = G[u][i];
            if (cur > potential[e.to] + 1 && e.cap > 0) {
                cur_edge[u] = i;
                cur         = potential[e.to] + 1;
            }
        }
        if ((int)all_ver.size(prv) > 1) {
            all_ver.erase(prv, u);
            if ((potential[u] = cur) == V) return potential[u] = V + 1, prv;
            act_ver.push(cur, u);
            all_ver.insert(cur, u);
            pot_max = max(pot_max, cur);
        } else {
            gap_relabel(u);
            return pot_max = prv - 1;
        }
        return cur;
    }

public:
    vector<vector<edge>> G;
    PushRelabel(const int node_size)
        : V(node_size), pot_max(-1), checker(0), excess(V, (T)0), potential(V, 0), cur_edge(V), que(V), all_ver(V, V), act_ver(V, V), G(V) {}
    void add_edge(const int _from, const int _to, const T _cap)
    {
        G[_from].emplace_back(_to, (int)G[_to].size(), _cap);
        G[_to].emplace_back(_from, (int)G[_from].size() - 1, 0);
    }
    T solve(const int source, const int sink)
    {
        s = source, t = sink;
        int level = init();
        while (level >= 0) {
            if (act_ver.empty(level)) {
                --level;
                continue;
            }
            int u = act_ver.top(level);
            act_ver.pop(level);
            if (excess[u] == 0) continue;
            level = discharge(u);
            if (checker >= V / 2) {
                level   = global_relabel();
                checker = 0;
            }
        }
        return excess[t];
    }
};
template<typename flow_t>
struct Dinic
{
    const flow_t INF;

    struct edge
    {
        int to;
        flow_t cap;
        int rev;
        bool isrev;
        int idx;
    };

    vector<vector<edge>> graph;
    vector<int> min_cost, iter;

    Dinic(int V) : INF(inf_v<flow_t>), graph(V) {}

    void add_edge(int from, int to, flow_t cap, int idx = -1)
    {
        graph[from].emplace_back((edge){to, cap, (int)graph[to].size(), false, idx});
        graph[to].emplace_back((edge){from, 0, (int)graph[from].size() - 1, true, idx});
    }

    bool bfs(int s, int t)
    {
        min_cost.assign(graph.size(), -1);
        queue<int> que;
        min_cost[s] = 0;
        que.push(s);
        while (!que.empty() && min_cost[t] == -1) {
            int p = que.front();
            que.pop();
            for (auto& e : graph[p]) {
                if (e.cap > 0 && min_cost[e.to] == -1) {
                    min_cost[e.to] = min_cost[p] + 1;
                    que.push(e.to);
                }
            }
        }
        return min_cost[t] != -1;
    }

    flow_t dfs(int idx, const int t, flow_t flow)
    {
        if (idx == t) return flow;
        for (int& i = iter[idx]; i < graph[idx].size(); i++) {
            edge& e = graph[idx][i];
            if (e.cap > 0 && min_cost[idx] < min_cost[e.to]) {
                flow_t d = dfs(e.to, t, min(flow, e.cap));
                if (d > 0) {
                    e.cap -= d;
                    graph[e.to][e.rev].cap += d;
                    return d;
                }
            }
        }
        return 0;
    }

    flow_t max_flow(int s, int t)
    {
        flow_t flow = 0;
        while (bfs(s, t)) {
            iter.assign(graph.size(), 0);
            flow_t f = 0;
            while ((f = dfs(s, t, INF)) > 0) flow += f;
        }
        return flow;
    }

    void output()
    {
        for (int i = 0; i < graph.size(); i++) {
            for (auto& e : graph[i]) {
                if (e.isrev) continue;
                auto& rev_e = graph[e.to][e.rev];
                cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << e.cap + rev_e.cap << ")" << endl;
            }
        }
    }
};

// template<typename flow_t>
// struct PushRelabel
// {
//     const flow_t INF;

//     struct edge
//     {
//         int to;
//         flow_t cap;
//         int rev;
//         bool isrev;
//         int idx;
//     };
//     vector<vector<edge>> graph;
//     vector<flow_t> ex;
//     int relabels, high;
//     vector<int> cnt, h;
//     vector<vector<int>> hs;

//     PushRelabel(int V) : INF(inf_v<flow_t>), graph(V), high(0), hs(V + 1) {}

//     void add_edge(int from, int to, flow_t cap, int idx = -1)
//     {
//         graph[from].emplace_back((edge){to, cap, (int)graph[to].size(), false, idx});
//         graph[to].emplace_back((edge){from, 0, (int)graph[from].size() - 1, true, idx});
//     }

//     void update_height(int idx, int nxt_height)
//     {
//         ++relabels;
//         if (h[idx] != graph.size() + 1) {
//             --cnt[h[idx]];
//         }
//         h[idx] = nxt_height;
//         if (h[idx] != graph.size() + 1) {
//             high = nxt_height;
//             ++cnt[nxt_height];
//             if (ex[idx] > 0) hs[nxt_height].emplace_back(idx);
//         }
//     }

//     void global_relabel(int idx)
//     {
//         for (int i = 0; i <= high; i++) hs[i].clear();
//         relabels = 0;
//         high     = 0;
//         h.assign(graph.size(), graph.size() + 1);
//         cnt.assign(graph.size(), 0);
//         queue<int> que;
//         que.emplace(idx);
//         h[idx] = 0;
//         while (que.size()) {
//             int p = que.front();
//             que.pop();
//             for (auto& e : graph[p]) {
//                 if (h[e.to] == graph.size() + 1 && graph[e.to][e.rev].cap > 0) {
//                     que.emplace(e.to);
//                     high = h[p] + 1;
//                     update_height(e.to, high);
//                 }
//             }
//         }
//     }

//     void push(int idx, edge& e)
//     {
//         if (h[e.to] == graph.size() + 1) return;
//         if (ex[e.to] == 0) {
//             hs[h[e.to]].emplace_back(e.to);
//         }
//         flow_t df = min(ex[idx], e.cap);
//         e.cap -= df;
//         graph[e.to][e.rev].cap += df;
//         ex[idx] -= df;
//         ex[e.to] += df;
//     }

//     void discharge(int idx)
//     {
//         int next_height = (int)graph.size() + 1;
//         for (auto&& e : graph[idx]) {
//             if (e.cap > 0) {
//                 if (h[idx] == h[e.to] + 1) {
//                     push(idx, e);
//                     if (ex[idx] <= 0) return;
//                 } else {
//                     next_height = min(next_height, h[e.to] + 1);
//                 }
//             }
//         }
//         if (cnt[h[idx]] > 1) {
//             update_height(idx, next_height);
//         } else {
//             for (; high >= h[idx]; hs[high--].clear()) {
//                 for (int j : hs[high]) update_height(j, graph.size() + 1);
//             }
//         }
//     }

//     flow_t max_flow(int s, int t)
//     {
//         ex.assign(graph.size(), 0);
//         ex[s] = INF;
//         ex[t] = -INF;
//         global_relabel(t);
//         for (auto& e : graph[s]) push(s, e);
//         for (; high >= 0; high--) {
//             while (!hs[high].empty()) {
//                 int idx = hs[high].back();
//                 hs[high].pop_back();
//                 discharge(idx);
//                 if (relabels >= graph.size() * 4) global_relabel(t);
//             }
//         }
//         return ex[t] + INF;
//     }

//     void output()
//     {
//         for (int i = 0; i < graph.size(); i++) {
//             for (auto& e : graph[i]) {
//                 if (e.isrev) continue;
//                 auto& rev_e = graph[e.to][e.rev];
//                 cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << e.cap + rev_e.cap << ")" << endl;
//             }
//         }
//     }
// };
int main()
{
    const auto [H, W] = in_t<int, int>();
    const auto G      = in_v<ll>({H, W});
    auto R            = in_v<ll>({H});
    auto C            = in_v<ll>({W});
    for (int i = 0; i < H; i++) {
        for (int j = 0; j < W; j++) {
            R[i] -= G[i][j];
            C[j] -= G[i][j];
        }
    }
    constexpr ll inf = TEN(9);
    PushRelabel<ll> f(H * W + H + W + 2);
    // Dinic<ll> f(H * W + H + W + 2);
    const int S = H * W + H + W;
    const int T = H * W + H + W + 1;
    ll ans      = 0;
    for (int i = 0; i < H; i++) {
        if (R[i] < 0) {
            f.add_edge(i, T, -R[i]);
        } else {
            ans += R[i];
        }
    }
    for (int j = 0; j < W; j++) {
        if (C[j] < 0) {
            f.add_edge(H + j, T, -C[j]);
        } else {
            ans += C[j];
        }
    }
    for (int i = 0; i < H; i++) {
        for (int j = 0; j < W; j++) {
            const int v = i * W + j + H + W;
            if (R[i] < 0) { f.add_edge(v, i, inf); }
            if (C[j] < 0) { f.add_edge(v, H + j, inf); }
            ans += G[i][j];
            if (R[i] < 0 or C[j] < 0) { f.add_edge(S, v, G[i][j]); }
        }
    }
    SHOW(ans);
    outln(ans - f.solve(S, T));
    return 0;
}
0