結果
| 問題 | No.957 植林 |
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2019-12-21 11:25:00 |
| 言語 | C (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 689 ms / 2,000 ms |
| コード長 | 5,098 bytes |
| 記録 | |
| コンパイル時間 | 462 ms |
| コンパイル使用メモリ | 32,512 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-07-19 04:43:39 |
| 合計ジャッジ時間 | 16,805 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 45 |
ソースコード
#include<stdio.h>
#include<stdlib.h>
#include<stdint.h>
#include<inttypes.h>
#include<string.h>
typedef int32_t i32;
typedef int64_t i64;
#define MAX(a,b) ((a)>(b)?(a):(b))
#define MIN(a,b) ((a)<(b)?(a):(b))
#define ALLOC(size,type) ((type*)calloc((size),sizeof(type)))
typedef i64 flow_type;
const flow_type flow_inf = 90000000000000;
typedef struct flow_edge {
int32_t vertex;
int32_t next;
flow_type capacity;
} flow_edge;
typedef struct maxFlowGraph {
flow_edge *edge;
int32_t *start;
int32_t vertex_num;
int32_t pointer;
int32_t edge_length;
} graph;
graph* new_graph (const int32_t vertex_num) {
graph * const g = (graph *) calloc (1, sizeof (graph));
g->vertex_num = vertex_num;
const int32_t initial_length = 4;
g->edge = (flow_edge *) calloc (initial_length, sizeof (flow_edge));
g->start = (int32_t *) calloc (vertex_num, sizeof (int32_t));
g->pointer = 0;
g->edge_length = initial_length;
for (int32_t i = 0; i < vertex_num; ++i) {
g->start[i] = -1;
}
return g;
}
void free_graph (graph * const g) {
free (g->edge);
free (g->start);
free (g);
}
void clear_graph (graph * const g) {
g->pointer = 0;
memset (g->start, -1, sizeof (int32_t) * g->vertex_num);
}
void add_edge (graph * const g, const int32_t from, const int32_t to, const flow_type capa) {
if (g->pointer == g->edge_length) {
g->edge_length *= 2;
g->edge = (flow_edge *) realloc (g->edge, sizeof (flow_edge) * g->edge_length);
}
const int32_t p = g->pointer;
g->edge[p] = (flow_edge) {to, g->start[from], capa};
g->start[from] = p;
g->edge[p + 1] = (flow_edge) {from, g->start[to], 0};
g->start[to] = p + 1;
g->pointer += 2;
}
void add_edge_undirected (graph * const g, const int32_t u, const int32_t v, const flow_type capa) {
if (g->pointer == g->edge_length) {
g->edge_length *= 2;
g->edge = (flow_edge *) realloc (g->edge, sizeof (flow_edge) * g->edge_length);
}
const int32_t p = g->pointer;
g->edge[p] = (flow_edge) {v, g->start[u], capa};
g->start[u] = p;
g->edge[p + 1] = (flow_edge) {u, g->start[v], capa};
g->start[v] = p + 1;
g->pointer += 2;
}
flow_type dinic_dfs (const int32_t v, const graph * const g, const int32_t dst, const int32_t * const level, int32_t * const iter, flow_type e) {
if (v == dst) return e;
flow_type sum = 0;
for (int32_t p = iter[v]; p != -1; p = g->edge[p].next, iter[v] = p) {
const int32_t u = g->edge[p].vertex;
const flow_type capa = g->edge[p].capacity;
if (level[u] <= level[v] || capa <= 0) continue;
const flow_type f = dinic_dfs (u, g, dst, level, iter, capa < e ? capa : e);
if (f > 0) {
g->edge[p].capacity -= f;
g->edge[p ^ 1].capacity += f;
sum += f;
e -= f;
if (e <= 0) return sum;
}
}
return sum;
}
flow_type dinic (const graph * const g, const int32_t src, const int32_t dst) {
const int32_t vertex_num = g->vertex_num;
int32_t * const level = (int32_t *) calloc (vertex_num, sizeof (int32_t));
int32_t * const queue = (int32_t *) calloc (vertex_num, sizeof (int32_t));
int32_t * const iter = (int32_t *) calloc (vertex_num, sizeof (int32_t));
flow_type flow = 0;
while (1) {
memset (level, 0, sizeof (int32_t) * vertex_num);
int32_t front = 0;
int32_t last = 0;
level[dst] = vertex_num;
queue[last++] = dst;
while (front < last && level[src] == 0) {
const int32_t v = queue[front++];
for (int32_t p = g->start[v]; p!=-1; p = g->edge[p].next) {
const int32_t u = g->edge[p].vertex;
if (g->edge[p ^ 1].capacity > 0 && level[u] == 0) {
level[u] = level[v] - 1;
queue[last++] = u;
}
}
}
if (level[src] == 0) break;
memcpy (iter, g->start, sizeof (int32_t) * vertex_num);
while (1) {
const flow_type f = dinic_dfs (src, g, dst, level, iter, flow_inf);
if (f <= 0) break;
flow += f;
}
}
free (level);
free (queue);
free (iter);
return flow;
}
void run(void) {
i32 h, w;
scanf ("%" SCNi32 "%" SCNi32, &h, &w);
i32 *a = ALLOC (h * w, i32);
i32 *r = ALLOC (h, i32);
i32 *c = ALLOC (w, i32);
for (i32 i = 0; i < h; ++i) {
for (i32 j = 0; j < w; ++j) {
scanf ("%" SCNi32, a + i * w + j);
}
}
for (i32 i = 0; i < h; ++i) {
scanf ("%" SCNi32, r + i);
}
for (i32 j = 0; j < w; ++j) {
scanf ("%" SCNi32, c + j);
}
graph *g = new_graph(h + w + 2);
const i32 src = h + w;
const i32 dst = src + 1;
for (i32 i = 0; i < h; ++i) {
i64 local = 0;
for (i32 j = 0; j < w; ++j) {
add_edge(g, h + j, i, a[i * w + j]);
local += a[i * w + j];
}
add_edge(g, i, dst, local);
}
i64 sum = 0;
for (i32 i = 0; i < h; ++i) {
sum += r[i];
add_edge(g, src, i, r[i]);
}
for (i32 j = 0; j < w; ++j) {
sum += c[j];
add_edge(g, src, h + j, c[j]);
}
i64 ans = sum - dinic(g, src, dst);
printf("%" PRIi64 "\n", ans);
}
int main(void) {
run();
return 0;
}
akakimidori