結果

問題 No.960 マンハッタン距離3
ユーザー PachicobuePachicobue
提出日時 2019-12-23 16:59:21
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 641 ms / 2,000 ms
コード長 12,266 bytes
コンパイル時間 1,884 ms
コンパイル使用メモリ 217,304 KB
実行使用メモリ 10,880 KB
最終ジャッジ日時 2024-09-17 15:01:39
合計ジャッジ時間 13,162 ms
ジャッジサーバーID
(参考情報)
judge6 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 1 ms
5,376 KB
testcase_07 AC 1 ms
5,376 KB
testcase_08 AC 1 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 1 ms
5,376 KB
testcase_17 AC 1 ms
5,376 KB
testcase_18 AC 1 ms
5,376 KB
testcase_19 AC 2 ms
5,376 KB
testcase_20 AC 2 ms
5,376 KB
testcase_21 AC 2 ms
5,376 KB
testcase_22 AC 1 ms
5,376 KB
testcase_23 AC 1 ms
5,376 KB
testcase_24 AC 2 ms
5,376 KB
testcase_25 AC 2 ms
5,376 KB
testcase_26 AC 2 ms
5,376 KB
testcase_27 AC 1 ms
5,376 KB
testcase_28 AC 1 ms
5,376 KB
testcase_29 AC 1 ms
5,376 KB
testcase_30 AC 2 ms
5,376 KB
testcase_31 AC 2 ms
5,376 KB
testcase_32 AC 1 ms
5,376 KB
testcase_33 AC 2 ms
5,376 KB
testcase_34 AC 1 ms
5,376 KB
testcase_35 AC 1 ms
5,376 KB
testcase_36 AC 1 ms
5,376 KB
testcase_37 AC 2 ms
5,376 KB
testcase_38 AC 2 ms
5,376 KB
testcase_39 AC 2 ms
5,376 KB
testcase_40 AC 2 ms
5,376 KB
testcase_41 AC 2 ms
5,376 KB
testcase_42 AC 1 ms
5,376 KB
testcase_43 AC 1 ms
5,376 KB
testcase_44 AC 2 ms
5,376 KB
testcase_45 AC 2 ms
5,376 KB
testcase_46 AC 2 ms
5,376 KB
testcase_47 AC 2 ms
5,376 KB
testcase_48 AC 1 ms
5,376 KB
testcase_49 AC 2 ms
5,376 KB
testcase_50 AC 1 ms
5,376 KB
testcase_51 AC 1 ms
5,376 KB
testcase_52 AC 1 ms
5,376 KB
testcase_53 AC 2 ms
5,376 KB
testcase_54 AC 1 ms
5,376 KB
testcase_55 AC 1 ms
5,376 KB
testcase_56 AC 1 ms
5,376 KB
testcase_57 AC 2 ms
5,376 KB
testcase_58 AC 2 ms
5,376 KB
testcase_59 AC 2 ms
5,376 KB
testcase_60 AC 2 ms
5,376 KB
testcase_61 AC 2 ms
5,376 KB
testcase_62 AC 2 ms
5,376 KB
testcase_63 AC 2 ms
5,376 KB
testcase_64 AC 1 ms
5,376 KB
testcase_65 AC 2 ms
5,376 KB
testcase_66 AC 2 ms
5,376 KB
testcase_67 AC 1 ms
5,376 KB
testcase_68 AC 2 ms
5,376 KB
testcase_69 AC 1 ms
5,376 KB
testcase_70 AC 2 ms
5,376 KB
testcase_71 AC 2 ms
5,376 KB
testcase_72 AC 1 ms
5,376 KB
testcase_73 AC 1 ms
5,376 KB
testcase_74 AC 2 ms
5,376 KB
testcase_75 AC 2 ms
5,376 KB
testcase_76 AC 1 ms
5,376 KB
testcase_77 AC 2 ms
5,376 KB
testcase_78 AC 2 ms
5,376 KB
testcase_79 AC 1 ms
5,376 KB
testcase_80 AC 1 ms
5,376 KB
testcase_81 AC 2 ms
5,376 KB
testcase_82 AC 2 ms
5,376 KB
testcase_83 AC 2 ms
5,376 KB
testcase_84 AC 1 ms
5,376 KB
testcase_85 AC 2 ms
5,376 KB
testcase_86 AC 2 ms
5,376 KB
testcase_87 AC 2 ms
5,376 KB
testcase_88 AC 1 ms
5,376 KB
testcase_89 AC 1 ms
5,376 KB
testcase_90 AC 1 ms
5,376 KB
testcase_91 AC 2 ms
5,376 KB
testcase_92 AC 2 ms
5,376 KB
testcase_93 AC 1 ms
5,376 KB
testcase_94 AC 2 ms
5,376 KB
testcase_95 AC 2 ms
5,376 KB
testcase_96 AC 2 ms
5,376 KB
testcase_97 AC 1 ms
5,376 KB
testcase_98 AC 2 ms
5,376 KB
testcase_99 AC 2 ms
5,376 KB
testcase_100 AC 2 ms
5,376 KB
testcase_101 AC 2 ms
5,376 KB
testcase_102 AC 2 ms
5,376 KB
testcase_103 AC 1 ms
5,376 KB
testcase_104 AC 2 ms
5,376 KB
testcase_105 AC 2 ms
5,376 KB
testcase_106 AC 1 ms
5,376 KB
testcase_107 AC 1 ms
5,376 KB
testcase_108 AC 1 ms
5,376 KB
testcase_109 AC 2 ms
5,376 KB
testcase_110 AC 2 ms
5,376 KB
testcase_111 AC 2 ms
5,376 KB
testcase_112 AC 1 ms
5,376 KB
testcase_113 AC 1 ms
5,376 KB
testcase_114 AC 2 ms
5,376 KB
testcase_115 AC 2 ms
5,376 KB
testcase_116 AC 1 ms
5,376 KB
testcase_117 AC 1 ms
5,376 KB
testcase_118 AC 2 ms
5,376 KB
testcase_119 AC 2 ms
5,376 KB
testcase_120 AC 2 ms
5,376 KB
testcase_121 AC 2 ms
5,376 KB
testcase_122 AC 1 ms
5,376 KB
testcase_123 AC 1 ms
5,376 KB
testcase_124 AC 2 ms
5,376 KB
testcase_125 AC 2 ms
5,376 KB
testcase_126 AC 2 ms
5,376 KB
testcase_127 AC 1 ms
5,376 KB
testcase_128 AC 8 ms
5,376 KB
testcase_129 AC 19 ms
5,504 KB
testcase_130 AC 13 ms
5,376 KB
testcase_131 AC 22 ms
6,016 KB
testcase_132 AC 125 ms
8,064 KB
testcase_133 AC 3 ms
5,376 KB
testcase_134 AC 6 ms
5,376 KB
testcase_135 AC 18 ms
5,376 KB
testcase_136 AC 25 ms
5,376 KB
testcase_137 AC 11 ms
5,376 KB
testcase_138 AC 63 ms
6,784 KB
testcase_139 AC 80 ms
7,552 KB
testcase_140 AC 22 ms
5,376 KB
testcase_141 AC 115 ms
8,320 KB
testcase_142 AC 41 ms
5,376 KB
testcase_143 AC 14 ms
5,376 KB
testcase_144 AC 351 ms
9,472 KB
testcase_145 AC 26 ms
5,376 KB
testcase_146 AC 50 ms
5,376 KB
testcase_147 AC 228 ms
7,680 KB
testcase_148 AC 16 ms
5,376 KB
testcase_149 AC 31 ms
6,144 KB
testcase_150 AC 44 ms
8,064 KB
testcase_151 AC 3 ms
5,376 KB
testcase_152 AC 16 ms
5,376 KB
testcase_153 AC 21 ms
5,376 KB
testcase_154 AC 4 ms
5,376 KB
testcase_155 AC 110 ms
6,528 KB
testcase_156 AC 38 ms
5,376 KB
testcase_157 AC 115 ms
6,656 KB
testcase_158 AC 117 ms
10,368 KB
testcase_159 AC 13 ms
5,376 KB
testcase_160 AC 5 ms
5,376 KB
testcase_161 AC 147 ms
7,168 KB
testcase_162 AC 19 ms
5,376 KB
testcase_163 AC 11 ms
5,376 KB
testcase_164 AC 44 ms
7,040 KB
testcase_165 AC 29 ms
6,144 KB
testcase_166 AC 6 ms
5,376 KB
testcase_167 AC 16 ms
5,376 KB
testcase_168 AC 188 ms
5,376 KB
testcase_169 AC 241 ms
5,376 KB
testcase_170 AC 216 ms
5,376 KB
testcase_171 AC 343 ms
5,888 KB
testcase_172 AC 13 ms
5,376 KB
testcase_173 AC 4 ms
5,376 KB
testcase_174 AC 79 ms
9,472 KB
testcase_175 AC 96 ms
10,624 KB
testcase_176 AC 31 ms
6,272 KB
testcase_177 AC 7 ms
5,376 KB
testcase_178 AC 48 ms
7,168 KB
testcase_179 AC 73 ms
8,960 KB
testcase_180 AC 19 ms
5,376 KB
testcase_181 AC 5 ms
5,376 KB
testcase_182 AC 9 ms
5,376 KB
testcase_183 AC 13 ms
5,376 KB
testcase_184 AC 10 ms
5,376 KB
testcase_185 AC 14 ms
5,376 KB
testcase_186 AC 17 ms
5,376 KB
testcase_187 AC 14 ms
5,376 KB
testcase_188 AC 1 ms
5,376 KB
testcase_189 AC 1 ms
5,376 KB
testcase_190 AC 1 ms
5,376 KB
testcase_191 AC 1 ms
5,376 KB
testcase_192 AC 1 ms
5,376 KB
testcase_193 AC 2 ms
5,376 KB
testcase_194 AC 2 ms
5,376 KB
testcase_195 AC 2 ms
5,376 KB
testcase_196 AC 164 ms
7,808 KB
testcase_197 AC 40 ms
5,376 KB
testcase_198 AC 154 ms
6,656 KB
testcase_199 AC 641 ms
8,320 KB
testcase_200 AC 17 ms
5,376 KB
testcase_201 AC 10 ms
5,376 KB
testcase_202 AC 104 ms
7,680 KB
testcase_203 AC 115 ms
6,272 KB
testcase_204 AC 314 ms
10,496 KB
testcase_205 AC 89 ms
6,016 KB
testcase_206 AC 18 ms
5,376 KB
testcase_207 AC 14 ms
5,376 KB
testcase_208 AC 265 ms
8,448 KB
testcase_209 AC 86 ms
5,376 KB
testcase_210 AC 20 ms
5,376 KB
testcase_211 AC 89 ms
5,632 KB
testcase_212 AC 5 ms
5,376 KB
testcase_213 AC 11 ms
5,376 KB
testcase_214 AC 248 ms
10,880 KB
testcase_215 AC 346 ms
9,344 KB
testcase_216 AC 399 ms
10,240 KB
testcase_217 AC 168 ms
7,040 KB
testcase_218 AC 19 ms
5,376 KB
testcase_219 AC 11 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
// created [2019/12/23] 12:51:08
#pragma GCC diagnostic ignored "-Wsign-compare"
#pragma GCC diagnostic ignored "-Wsign-conversion"

using i32   = int32_t;
using i64   = int64_t;
using u32   = uint32_t;
using u64   = uint64_t;
using uint  = unsigned int;
using usize = std::size_t;
using ll    = long long;
using ull   = unsigned long long;
using ld    = long double;
template<typename T, usize n>
using arr = T (&)[n];
template<typename T, usize n>
using c_arr = const T (&)[n];
template<typename T> constexpr T popcount(const T u) { return u ? static_cast<T>(__builtin_popcountll(static_cast<u64>(u))) : static_cast<T>(0); }
template<typename T> constexpr T log2p1(const T u) { return u ? static_cast<T>(64 - __builtin_clzll(static_cast<u64>(u))) : static_cast<T>(0); }
template<typename T> constexpr T msbp1(const T u) { return log2p1(u); }
template<typename T> constexpr T lsbp1(const T u) { return __builtin_ffsll(u); }
template<typename T> constexpr T clog(const T u) { return u ? log2p1(u - 1) : static_cast<T>(u); }
template<typename T> constexpr bool ispow2(const T u) { return u and (static_cast<u64>(u) & static_cast<u64>(u - 1)) == 0; }
template<typename T> constexpr T ceil2(const T u) { return static_cast<T>(1) << clog(u); }
template<typename T> constexpr T floor2(const T u) { return u == 0 ? static_cast<T>(0) : static_cast<T>(1) << (log2p1(u) - 1); }
template<typename T> constexpr bool btest(const T mask, const usize ind) { return static_cast<bool>((static_cast<u64>(mask) >> ind) & static_cast<u64>(1)); }
template<typename T> void bset(T& mask, const usize ind) { mask |= (static_cast<T>(1) << ind); }
template<typename T> void breset(T& mask, const usize ind) { mask &= ~(static_cast<T>(1) << ind); }
template<typename T> void bflip(T& mask, const usize ind) { mask ^= (static_cast<T>(1) << ind); }
template<typename T> void bset(T& mask, const usize ind, const bool b) { (b ? bset(mask, ind) : breset(mask, ind)); }
template<typename T> constexpr T bcut(const T mask, const usize ind) { return ind == 0 ? static_cast<T>(0) : static_cast<T>((static_cast<u64>(mask) << (64 - ind)) >> (64 - ind)); }
template<typename T> bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); }
template<typename T> bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); }
constexpr unsigned int mod                  = 1000000007;
template<typename T> constexpr T inf_v      = std::numeric_limits<T>::max() / 4;
template<typename Real> constexpr Real pi_v = Real{3.141592653589793238462643383279502884};
auto mfp = [](auto&& f) { return [=](auto&&... args) { return f(f, std::forward<decltype(args)>(args)...); }; };

template<typename T>
T in()
{
    T v;
    return std::cin >> v, v;
}
template<typename T, typename Uint, usize n, usize i>
T in_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type) { return in<T>(); }
template<typename T, typename Uint, usize n, usize i>
auto in_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type& szs)
{
    const usize s = (usize)szs[i];
    std::vector<decltype(in_v<T, Uint, n, i + 1>(szs))> ans(s);
    for (usize j = 0; j < s; j++) { ans[j] = in_v<T, Uint, n, i + 1>(szs); }
    return ans;
}
template<typename T, typename Uint, usize n>
auto in_v(c_arr<Uint, n> szs) { return in_v<T, Uint, n, 0>(szs); }
template<typename... Types>
auto in_t() { return std::tuple<std::decay_t<Types>...>{in<Types>()...}; }
struct io_init
{
    io_init()
    {
        std::cin.tie(nullptr), std::ios::sync_with_stdio(false);
        std::cout << std::fixed << std::setprecision(20);
    }
    void clear()
    {
        std::cin.tie(), std::ios::sync_with_stdio(true);
    }
} io_setting;

template<typename T>
int out(const T& v) { return std::cout << v, 0; }
template<typename T>
int out(const std::vector<T>& v)
{
    for (usize i = 0; i < v.size(); i++) {
        if (i > 0) { std::cout << ' '; }
        out(v[i]);
    }
    return std::cout << "\n", 0;
}
template<typename T1, typename T2>
int out(const std::pair<T1, T2>& v) { return out(v.first), std::cout << ' ', out(v.second), 0; }
template<typename T, typename... Args>
int out(const T& v, const Args... args) { return out(v), std::cout << ' ', out(args...), 0; }
template<typename... Args>
int outln(const Args... args) { return out(args...), std::cout << '\n', 0; }
template<typename... Args>
void outel(const Args... args) { return out(args...), std::cout << std::endl, 0; }
#    define SHOW(...) static_cast<void>(0)
constexpr ull TEN(const usize n) { return n == 0 ? 1ULL : TEN(n - 1) * 10ULL; }

template<typename T, typename Uint, usize n, usize i>
auto make_v(typename std::enable_if<(i == n), c_arr<Uint, n>>::type, const T& v = T{}) { return v; }
template<typename T, typename Uint, usize n, usize i>
auto make_v(typename std::enable_if<(i < n), c_arr<Uint, n>>::type szs, const T& v = T{})
{
    const usize s = (usize)szs[i];
    return std::vector<decltype(make_v<T, Uint, n, i + 1>(szs, v))>(s, make_v<T, Uint, n, i + 1>(szs, v));
}
template<typename T, typename Uint, usize n>
auto make_v(c_arr<Uint, n> szs, const T& t = T{}) { return make_v<T, Uint, n, 0>(szs, t); }
int main()
{
    using pll    = std::pair<ll, ll>;
    const auto W = in<ll>(), H = in<ll>();
    auto enc     = [&](ll x, ll y) -> pll { return pll{x + y, y - x}; };
    auto dec     = [&](ll x, ll y) -> pll { return std::abs(x + y) % 2 == 1 ? pll{-1, -1} : pll{(x - y) / 2, (x + y) / 2}; };
    auto L1      = [&](ll x1, ll y1, ll x2, ll y2) { return std::abs(x1 - x2) + std::abs(y1 - y2); };
    auto Linf    = [&](ll x1, ll y1, ll x2, ll y2) { return std::max(std::abs(x1 - x2), std::abs(y1 - y2)); };
    auto is_in   = [&](ll x, ll y) { return 1 <= y and y <= H and 1 <= x and x <= W; };
    const auto N = in<int>();
    std::vector<ll> rxs(N), rys(N);
    for (int i = 0; i < N; i++) { rxs[i] = in<ll>(), rys[i] = in<ll>(); }
    {
        std::set<ll> parity;
        for (int i = 0; i < N; i++) { parity.insert(std::abs(rxs[i] + rys[i]) % 2); }
        if (parity.size() == 2) { return outln(0); }
    }
    std::vector<ll> xs(N), ys(N);
    for (int i = 0; i < N; i++) { std::tie(xs[i], ys[i]) = enc(rxs[i], rys[i]); }
    auto is_ok = [&](ll x, ll y) {
        if (not is_in(x, y)) { return false; }
        std::set<ll> ds;
        for (int i = 0; i < N; i++) { ds.insert(L1(rxs[i], rys[i], x, y)); }
        return ds.size() == 1;
    };
    SHOW(xs, ys);
    const ll ym = *std::min_element(ys.begin(), ys.end());
    const ll xm = *std::min_element(xs.begin(), xs.end());
    const ll yM = *std::max_element(ys.begin(), ys.end());
    const ll xM = *std::max_element(xs.begin(), xs.end());

    if (xm == xM) {  // AC
        ll p1 = xm * 2 + (yM - ym), q1 = ym + yM;
        ll p2 = xm * 2 - (yM - ym), q2 = ym + yM;
        if (p1 % 2 == 1 or q1 % 2 == 1) { return outln(0); }
        p1 /= 2, q1 /= 2;
        p2 /= 2, q2 /= 2;
        std::tie(p1, q1) = dec(p1, q1);
        std::tie(p2, q2) = dec(p2, q2);
        if (not is_ok(p1, q1) or not is_ok(p2, q2)) { return outln(0); }
        SHOW(p1, q1), SHOW(p2, q2);
        ll ans = (W - p1 + 1) * (H - q1 + 1) + p2 * q2;
        if (N == 2) { ans += (p1 - p2 - 1); }
        return outln(ans);
    }
    if (ym == yM) {  // AC
        ll p1 = xm + xM, q1 = ym * 2 - (xM - xm);
        ll p2 = xm + xM, q2 = ym * 2 + (xM - xm);
        if (p1 % 2 == 1 or q1 % 2 == 1) { return outln(0); }
        p1 /= 2, q1 /= 2;
        p2 /= 2, q2 /= 2;
        std::tie(p1, q1) = dec(p1, q1);
        std::tie(p2, q2) = dec(p2, q2);
        if (not is_ok(p1, q1) or not is_ok(p2, q2)) { return outln(0); }
        SHOW(p1, q1), SHOW(p2, q2);
        ll ans = (W - p1 + 1) * q1 + p2 * (H - q2 + 1);
        if (N == 2) { ans += (p1 - p2 - 1); }
        return outln(ans);
    }
    if (xM - xm == yM - ym) {  // AC
        ll p = xm + xM, q = ym + yM;
        if (p % 2 == 1 or q % 2 == 1) { return outln(0); }
        p /= 2, q /= 2;
        std::tie(p, q) = dec(p, q);
        if (not is_ok(p, q)) { return outln(0); }
        ll ans            = 1;
        constexpr ll dx[] = {-1, -1, -1, 0, 0, 1, 1, 1};
        constexpr ll dy[] = {-1, 0, 1, -1, 1, -1, 0, 1};
        for (int i = 0; i < 8; i++) {
            ll inf = 0, sup = H + W;
            while (sup - inf > 1) {
                const ll mid = (inf + sup) / 2;
                const ll np = p + mid * dx[i], nq = q + mid * dy[i];
                (is_ok(np, nq) ? inf : sup) = mid;
            }
            ans += inf;
        }
        return outln(ans);
    } else if (xM - xm < yM - ym) {
        ll p1 = xm * 2 + (yM - ym), q1 = ym + yM;
        ll p2 = xM * 2 - (yM - ym), q2 = ym + yM;
        if (p1 % 2 == 1 or q1 % 2 == 1) { return outln(0); }
        p1 /= 2, q1 /= 2;
        p2 /= 2, q2 /= 2;
        std::tie(p1, q1) = dec(p1, q1);
        std::tie(p2, q2) = dec(p2, q2);
        ll ans           = 0;
        if (is_ok(p1, q1)) {
            ans++;
            ll inf = 0, sup = H + W;
            while (sup - inf > 1) {
                const ll mid = (inf + sup) / 2;
                const ll np1 = p1, nq1 = q1 + mid;
                (is_ok(np1, nq1) ? inf : sup) = mid;
            }
            ans += inf;
            inf = 0, sup = H + W;
            while (sup - inf > 1) {
                const ll mid = (inf + sup) / 2;
                const ll np1 = p1 + mid, nq1 = q1;
                (is_ok(np1, nq1) ? inf : sup) = mid;
            }
            ans += inf;
        }
        if (is_ok(p2, q2)) {
            ans++;
            ll inf = 0, sup = H + W;
            while (sup - inf > 1) {
                const ll mid = (inf + sup) / 2;
                const ll np2 = p2, nq2 = q2 - mid;
                (is_ok(np2, nq2) ? inf : sup) = mid;
            }
            ans += inf;
            inf = 0, sup = H + W;
            while (sup - inf > 1) {
                const ll mid = (inf + sup) / 2;
                const ll np2 = p2 - mid, nq2 = q2;
                (is_ok(np2, nq2) ? inf : sup) = mid;
            }
            ans += inf;
        }
        if (is_ok(p1, q1) and is_ok(p2, q2)) {
            ll inf = 0, sup = H + W;
            while (sup - inf > 1) {
                const ll mid = (inf + sup) / 2;
                const ll np = p1 - mid, nq = q1 - mid;
                (is_ok(np, nq) ? inf : sup) = mid;
            }
            ans += inf - 1;
        }
        return outln(ans);
    } else {
        ll p1 = xm + xM, q1 = yM * 2 - (xM - xm);
        ll p2 = xm + xM, q2 = ym * 2 + (xM - xm);
        if (p1 % 2 == 1 or q1 % 2 == 1) { return outln(0); }
        p1 /= 2, q1 /= 2;
        p2 /= 2, q2 /= 2;
        std::tie(p1, q1) = dec(p1, q1);
        std::tie(p2, q2) = dec(p2, q2);
        ll ans           = 0;
        if (is_ok(p1, q1)) {
            ans++;
            ll inf = 0, sup = H + W;
            while (sup - inf > 1) {
                const ll mid = (inf + sup) / 2;
                const ll np1 = p1 + mid, nq1 = q1;
                (is_ok(np1, nq1) ? inf : sup) = mid;
            }
            ans += inf;
            inf = 0, sup = H + W;
            while (sup - inf > 1) {
                const ll mid = (inf + sup) / 2;
                const ll np1 = p1, nq1 = q1 - mid;
                (is_ok(np1, nq1) ? inf : sup) = mid;
            }
            ans += inf;
        }
        if (is_ok(p2, q2)) {
            ans++;
            ll inf = 0, sup = H + W;
            while (sup - inf > 1) {
                const ll mid = (inf + sup) / 2;
                const ll np2 = p2 - mid, nq2 = q2;
                (is_ok(np2, nq2) ? inf : sup) = mid;
            }
            ans += inf;
            inf = 0, sup = H + W;
            while (sup - inf > 1) {
                const ll mid = (inf + sup) / 2;
                const ll np2 = p2, nq2 = q2 + mid;
                (is_ok(np2, nq2) ? inf : sup) = mid;
            }
            ans += inf;
        }
        if (is_ok(p1, q1) and is_ok(p2, q2)) {
            ll inf = 0, sup = H + W;
            while (sup - inf > 1) {
                const ll mid = (inf + sup) / 2;
                const ll np = p1 - mid, nq = q1 + mid;
                (is_ok(np, nq) ? inf : sup) = mid;
            }
            ans += inf - 1;
        }
        return outln(ans);
    }
    return 0;
}
0