結果
| 問題 |
No.659 徘徊迷路
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-12-25 13:35:16 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 3,658 bytes |
| コンパイル時間 | 826 ms |
| コンパイル使用メモリ | 87,444 KB |
| 最終ジャッジ日時 | 2024-11-14 22:00:25 |
| 合計ジャッジ時間 | 1,183 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp: In function 'int main()':
main.cpp:110:19: error: variable 'std::array<int, 4> dy' has initializer but incomplete type
110 | array<int, 4> dy = {-1, 1, 0, 0}, dx{0, 0, -1, 1};
| ^~
main.cpp:110:39: error: variable 'std::array<int, 4> dx' has initializer but incomplete type
110 | array<int, 4> dy = {-1, 1, 0, 0}, dx{0, 0, -1, 1};
| ^~
main.cpp: In instantiation of 'struct SquareMatrix<double, 64>':
main.cpp:111:9: required from here
main.cpp:27:9: error: 'SquareMatrix<T, SIZE>::A' has incomplete type
27 | mat A;
| ^
In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_map.h:63,
from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/map:61,
from main.cpp:4:
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/tuple:1595:45: note: declaration of 'using mat = struct std::array<std::array<double, 64>, 64>' {aka 'struct std::array<std::array<double, 64>, 64>'}
1595 | template<typename _Tp, size_t _Nm> struct array;
| ^~~~~
main.cpp:122:27: error: no match for 'operator[]' (operand types are 'SquareMatrix<double, 64>::ar' {aka 'std::array<double, 64>'} and 'int')
122 | A[f(i, j)][f(i, j)] = 1;
| ^
main.cpp:133:36: error: no match for 'operator[]' (operand types are 'SquareMatrix<double, 64>::ar' {aka 'std::array<double, 64>'} and 'int')
133 | printf("%.10lf\n", A[f(sy, sx)][f(gy, gx)]);
| ^
ソースコード
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>
#include <limits>
static const int MOD = 1000000007;
using ll = long long;
using u32 = unsigned;
using u64 = unsigned long long;
using namespace std;
template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;
template<class T, size_t SIZE>
struct SquareMatrix {
using ar = array<T, SIZE>;
using mat = array<ar, SIZE>;
mat A;
SquareMatrix() = default;
static SquareMatrix I(T e, T f){
SquareMatrix X{};
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
if(i == j) X[i][j] = e;
else X[i][j] = f;
}
}
return X;
}
friend ar operator*=(ar &x, const SquareMatrix &Y) {
ar ans{};
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
ans[j] += x[i]*Y[i][j];
}
}
x.swap(ans);
return x;
}
friend ar operator*(ar x, const SquareMatrix &Y) { return x *= Y; }
inline const ar &operator[](int k) const{ return (A.at(k)); }
inline ar &operator[](int k) { return (A.at(k)); }
SquareMatrix &operator+= (const SquareMatrix &B){
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
(*this)[i][j] += B[i][j];
}
}
return (*this);
}
SquareMatrix &operator-= (const SquareMatrix &B){
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
(*this)[i][j] -= B[i][j];
}
}
return (*this);
}
SquareMatrix &operator*=(const SquareMatrix &B) {
SquareMatrix C{};
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
for (int k = 0; k < SIZE; ++k) {
C[i][j] += ((*this)[i][k] * B[k][j]);
}
}
}
A.swap(C.A);
return (*this);
}
SquareMatrix pow(ll n) const {
SquareMatrix a = (*this), res = I(T(1), T(0));
while(n > 0){
if(n & 1) res *= a;
a *= a;
n >>= 1;
}
return res;
}
SquareMatrix operator+(const SquareMatrix &B) const {return SquareMatrix(*this) += B;}
SquareMatrix operator-(const SquareMatrix &B) const {return SquareMatrix(*this) -= B;}
SquareMatrix operator*(const SquareMatrix &B) const {return SquareMatrix(*this) *= B;}
};
using ar = array<double, 64>;
using mat = SquareMatrix<double, 64>;
int main() {
int r, c, t;
cin >> r >> c >> t;
int sy, sx, gy, gx;
cin >> sy >> sx >> gy >> gx;
vector<string> v(r);
for (auto &&i : v) cin >> i;
array<int, 4> dy = {-1, 1, 0, 0}, dx{0, 0, -1, 1};
mat A;
auto f = [&](int y, int x){ return (y-1)*(c-2)+x-1; };
for (int i = 1; i < r-1; ++i) {
for (int j = 1; j < c-1; ++j) {
if(v[i][j] == '#') continue;
int cnt = 0;
for (int k = 0; k < 4; ++k) {
if(v[i+dy[k]][j+dx[k]] == '.') cnt++;
}
if(!cnt){
A[f(i, j)][f(i, j)] = 1;
}else {
for (int k = 0; k < 4; ++k) {
if(v[i+dy[k]][j+dx[k]] == '.'){
A[f(i, j)][f(i+dy[k], j+dx[k])] = 1.0/cnt;
}
}
}
}
}
A = A.pow(t);
printf("%.10lf\n", A[f(sy, sx)][f(gy, gx)]);
return 0;
}