結果

問題 No.659 徘徊迷路
ユーザー firiexpfiriexp
提出日時 2019-12-25 13:35:16
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 3,658 bytes
コンパイル時間 826 ms
コンパイル使用メモリ 87,444 KB
最終ジャッジ日時 2024-11-14 22:00:25
合計ジャッジ時間 1,183 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
main.cpp: In function 'int main()':
main.cpp:110:19: error: variable 'std::array<int, 4> dy' has initializer but incomplete type
  110 |     array<int, 4> dy = {-1, 1, 0, 0}, dx{0, 0, -1, 1};
      |                   ^~
main.cpp:110:39: error: variable 'std::array<int, 4> dx' has initializer but incomplete type
  110 |     array<int, 4> dy = {-1, 1, 0, 0}, dx{0, 0, -1, 1};
      |                                       ^~
main.cpp: In instantiation of 'struct SquareMatrix<double, 64>':
main.cpp:111:9:   required from here
main.cpp:27:9: error: 'SquareMatrix<T, SIZE>::A' has incomplete type
   27 |     mat A;
      |         ^
In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_map.h:63,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/map:61,
                 from main.cpp:4:
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/tuple:1595:45: note: declaration of 'using mat = struct std::array<std::array<double, 64>, 64>' {aka 'struct std::array<std::array<double, 64>, 64>'}
 1595 |   template<typename _Tp, size_t _Nm> struct array;
      |                                             ^~~~~
main.cpp:122:27: error: no match for 'operator[]' (operand types are 'SquareMatrix<double, 64>::ar' {aka 'std::array<double, 64>'} and 'int')
  122 |                 A[f(i, j)][f(i, j)] = 1;
      |                           ^
main.cpp:133:36: error: no match for 'operator[]' (operand types are 'SquareMatrix<double, 64>::ar' {aka 'std::array<double, 64>'} and 'int')
  133 |     printf("%.10lf\n", A[f(sy, sx)][f(gy, gx)]);
      |                                    ^

ソースコード

diff #

#include <iostream>
#include <algorithm>
#include <iomanip>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>
#include <limits>

static const int MOD = 1000000007;
using ll = long long;
using u32 = unsigned;
using u64 = unsigned long long;
using namespace std;

template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;



template<class T, size_t SIZE>
struct SquareMatrix {
    using ar = array<T, SIZE>;
    using mat = array<ar, SIZE>;
    mat A;
    SquareMatrix() = default;
    static SquareMatrix I(T e, T f){
        SquareMatrix X{};
        for (int i = 0; i < SIZE; ++i) {
            for (int j = 0; j < SIZE; ++j) {
                if(i == j) X[i][j] = e;
                else X[i][j] = f;
            }
        }
        return X;
    }

    friend ar operator*=(ar &x, const SquareMatrix &Y) {
        ar ans{};
        for (int i = 0; i < SIZE; ++i) {
            for (int j = 0; j < SIZE; ++j) {
                 ans[j] += x[i]*Y[i][j];
            }
        }
        x.swap(ans);
        return x;
    }
    friend ar operator*(ar x, const SquareMatrix &Y) { return x *= Y; }

    inline const ar &operator[](int k) const{ return (A.at(k)); }
    inline ar &operator[](int k) { return (A.at(k)); }
    SquareMatrix &operator+= (const SquareMatrix &B){
        for (int i = 0; i < SIZE; ++i) {
            for (int j = 0; j < SIZE; ++j) {
                (*this)[i][j] += B[i][j];
            }
        }
        return (*this);
    }

    SquareMatrix &operator-= (const SquareMatrix &B){
        for (int i = 0; i < SIZE; ++i) {
            for (int j = 0; j < SIZE; ++j) {
                (*this)[i][j] -= B[i][j];
            }
        }
        return (*this);
    }

    SquareMatrix &operator*=(const SquareMatrix &B) {
        SquareMatrix C{};
        for (int i = 0; i < SIZE; ++i) {
            for (int j = 0; j < SIZE; ++j) {
                for (int k = 0; k < SIZE; ++k) {
                    C[i][j] += ((*this)[i][k] * B[k][j]);
                }
            }
        }
        A.swap(C.A);
        return (*this);
    }

    SquareMatrix pow(ll n) const {
        SquareMatrix a = (*this), res = I(T(1), T(0));
        while(n > 0){
            if(n & 1) res *= a;
            a *= a;
            n >>= 1;
        }
        return res;
    }
    SquareMatrix operator+(const SquareMatrix &B) const {return SquareMatrix(*this) += B;}
    SquareMatrix operator-(const SquareMatrix &B) const {return SquareMatrix(*this) -= B;}
    SquareMatrix operator*(const SquareMatrix &B) const {return SquareMatrix(*this) *= B;}
};

using ar = array<double, 64>;
using mat = SquareMatrix<double, 64>;


int main() {
    int r, c, t;
    cin >> r >> c >> t;
    int sy, sx, gy, gx;
    cin >> sy >> sx >> gy >> gx;
    vector<string> v(r);
    for (auto &&i : v) cin >> i;
    array<int, 4> dy = {-1, 1, 0, 0}, dx{0, 0, -1, 1};
    mat A;
    auto f = [&](int y, int x){ return (y-1)*(c-2)+x-1; };
    for (int i = 1; i < r-1; ++i) {
        for (int j = 1; j < c-1; ++j) {
            if(v[i][j] == '#') continue;

            int cnt = 0;
            for (int k = 0; k < 4; ++k) {
                if(v[i+dy[k]][j+dx[k]] == '.') cnt++;
            }
            if(!cnt){
                A[f(i, j)][f(i, j)] = 1;
            }else {
                for (int k = 0; k < 4; ++k) {
                    if(v[i+dy[k]][j+dx[k]] == '.'){
                        A[f(i, j)][f(i+dy[k], j+dx[k])] = 1.0/cnt;
                    }
                }
            }
        }
    }
    A = A.pow(t);
    printf("%.10lf\n", A[f(sy, sx)][f(gy, gx)]);
    return 0;
}
0