結果
問題 | No.659 徘徊迷路 |
ユーザー | firiexp |
提出日時 | 2019-12-25 13:47:26 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 3,928 bytes |
コンパイル時間 | 869 ms |
コンパイル使用メモリ | 86,984 KB |
最終ジャッジ日時 | 2024-11-14 22:00:16 |
合計ジャッジ時間 | 1,435 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp: In function 'int main()': main.cpp:117:19: error: variable 'std::array<int, 4> dy' has initializer but incomplete type 117 | array<int, 4> dy = {-1, 1, 0, 0}, dx{0, 0, -1, 1}; | ^~ main.cpp:117:39: error: variable 'std::array<int, 4> dx' has initializer but incomplete type 117 | array<int, 4> dy = {-1, 1, 0, 0}, dx{0, 0, -1, 1}; | ^~ main.cpp: In instantiation of 'struct SquareMatrix<SemiRing, 64>': main.cpp:118:9: required from here main.cpp:26:9: error: 'SquareMatrix<H, SIZE>::A' has incomplete type 26 | mat A; | ^ In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_map.h:63, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/map:61, from main.cpp:4: /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/tuple:1595:45: note: declaration of 'using mat = struct std::array<std::array<double, 64>, 64>' {aka 'struct std::array<std::array<double, 64>, 64>'} 1595 | template<typename _Tp, size_t _Nm> struct array; | ^~~~~ main.cpp:129:27: error: no match for 'operator[]' (operand types are 'SquareMatrix<SemiRing, 64>::ar' {aka 'std::array<double, 64>'} and 'int') 129 | A[f(i, j)][f(i, j)] = 1; | ^ main.cpp:140:36: error: no match for 'operator[]' (operand types are 'SquareMatrix<SemiRing, 64>::ar' {aka 'std::array<double, 64>'} and 'int') 140 | printf("%.10lf\n", A[f(sy, sx)][f(gy, gx)]); | ^
ソースコード
#include <iostream> #include <algorithm> #include <iomanip> #include <map> #include <set> #include <queue> #include <stack> #include <numeric> #include <bitset> #include <cmath> #include <limits> static const int MOD = 1000000007; using ll = long long; using u32 = unsigned; using u64 = unsigned long long; using namespace std; template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208; template<class H, size_t SIZE> struct SquareMatrix { using T = typename H::T; using ar = array<T, SIZE>; using mat = array<ar, SIZE>; mat A; SquareMatrix() = default; static SquareMatrix I(){ SquareMatrix X{}; for (int i = 0; i < SIZE; ++i) { for (int j = 0; j < SIZE; ++j) { if(i == j) X[i][j] = H::one(); else X[i][j] = H::zero(); } } return X; } friend ar operator*=(ar &x, const SquareMatrix &Y) { ar ans{}; for (int i = 0; i < SIZE; ++i) { for (int j = 0; j < SIZE; ++j) { H::add(ans[j], H::mul(x[i], Y[i][j])); } } x.swap(ans); return x; } friend ar operator*(ar x, const SquareMatrix &Y) { return x *= Y; } inline const ar &operator[](int k) const{ return (A.at(k)); } inline ar &operator[](int k) { return (A.at(k)); } SquareMatrix &operator+= (const SquareMatrix &B){ for (int i = 0; i < SIZE; ++i) { for (int j = 0; j < SIZE; ++j) { H::add((*this)[i][j], B[i][j]); } } return (*this); } SquareMatrix &operator-= (const SquareMatrix &B){ for (int i = 0; i < SIZE; ++i) { for (int j = 0; j < SIZE; ++j) { H::add((*this)[i][j], -B[i][j]); } } return (*this); } SquareMatrix &operator*=(const SquareMatrix &B) { SquareMatrix C{}; for (int i = 0; i < SIZE; ++i) { for (int j = 0; j < SIZE; ++j) { for (int k = 0; k < SIZE; ++k) { H::add(C[i][j], H::mul((*this)[i][k], B[k][j])); } } } A.swap(C.A); return (*this); } SquareMatrix pow(ll n) const { SquareMatrix a = (*this), res = I(); while(n > 0){ if(n & 1) res *= a; a *= a; n >>= 1; } return res; } SquareMatrix operator+(const SquareMatrix &B) const {return SquareMatrix(*this) += B;} SquareMatrix operator-(const SquareMatrix &B) const {return SquareMatrix(*this) -= B;} SquareMatrix operator*(const SquareMatrix &B) const {return SquareMatrix(*this) *= B;} }; struct SemiRing { using T = double; static T mul(T x, T y){ return x * y; } static void add(T &x, T y){ x += y; } static T one(){ return 1.0; } static T zero(){ return 0.0; } }; using ar = array<SemiRing::T, 64>; using mat = SquareMatrix<SemiRing, 64>; int main() { int r, c, t; cin >> r >> c >> t; int sy, sx, gy, gx; cin >> sy >> sx >> gy >> gx; vector<string> v(r); for (auto &&i : v) cin >> i; array<int, 4> dy = {-1, 1, 0, 0}, dx{0, 0, -1, 1}; mat A; auto f = [&](int y, int x){ return (y-1)*(c-2)+x-1; }; for (int i = 1; i < r-1; ++i) { for (int j = 1; j < c-1; ++j) { if(v[i][j] == '#') continue; int cnt = 0; for (int k = 0; k < 4; ++k) { if(v[i+dy[k]][j+dx[k]] == '.') cnt++; } if(!cnt){ A[f(i, j)][f(i, j)] = 1; }else { for (int k = 0; k < 4; ++k) { if(v[i+dy[k]][j+dx[k]] == '.'){ A[f(i, j)][f(i+dy[k], j+dx[k])] = 1.0/cnt; } } } } } A = A.pow(t); printf("%.10lf\n", A[f(sy, sx)][f(gy, gx)]); return 0; }