結果

問題 No.956 Number of Unbalanced
ユーザー jelljell
提出日時 2019-12-28 20:49:27
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 17,019 bytes
コンパイル時間 1,792 ms
コンパイル使用メモリ 129,152 KB
実行使用メモリ 10,984 KB
最終ジャッジ日時 2024-04-20 17:23:57
合計ジャッジ時間 5,460 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
10,840 KB
testcase_01 AC 4 ms
5,376 KB
testcase_02 AC 5 ms
5,464 KB
testcase_03 AC 6 ms
5,376 KB
testcase_04 AC 5 ms
5,596 KB
testcase_05 AC 5 ms
5,464 KB
testcase_06 TLE -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifdef LOCAL
    #define _GLIBCXX_DEBUG
    #define __clock__
#else
    #pragma GCC optimize("Ofast")
    // #define NDEBUG
#endif
// #define __buffer_check__
#define __precision__ 10
#define iostream_untie true
#define debug_stream std::cerr

#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>

#define all(v) std::begin(v), std::end(v)
#define rall(v) std::rbegin(v), std::rend(v)
#define odd(n) ((n) & 1)
#define even(n) (not __odd(n))
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)

using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using pii = std::pair<i32, i32>; using pll = std::pair<i64, i64>;
template <class T> using heap = std::priority_queue<T>;
template <class T> using rheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using hashset = std::unordered_set<T>;
template <class Key, class Value> using hashmap = std::unordered_map<Key, Value>;

namespace setting
{
    using namespace std::chrono;
    system_clock::time_point start_time, end_time;
    long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }
    void print_elapsed_time() { debug_stream << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n"; }
    void buffer_check() { char bufc; if(std::cin >> bufc) debug_stream << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; }
    struct setupper
    {
        setupper()
        {
            if(iostream_untie) std::ios::sync_with_stdio(false), std::cin.tie(nullptr);
            std::cout << std::fixed << std::setprecision(__precision__);
    #ifdef stderr_path
            if(freopen(stderr_path, "a", stderr))
            {
                std::cerr << std::fixed << std::setprecision(__precision__);
            }
    #endif
    #ifdef stdout_path
            if(not freopen(stdout_path, "w", stdout))
            {
                freopen("CON", "w", stdout);
                debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdout file.\n";
            }
            std::cout << "";
    #endif
    #ifdef stdin_path
            if(not freopen(stdin_path, "r", stdin))
            {
                freopen("CON", "r", stdin);
                debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdin file.\n";
            }
    #endif
    #ifdef LOCAL
            debug_stream << "\n----- stderr at LOCAL -----\n\n";
            atexit(print_elapsed_time);
    #endif
    #ifdef __buffer_check__
            atexit(buffer_check);
    #endif
    #if defined(__clock__) || defined(LOCAL)
            start_time = system_clock::now();
    #endif
        }
    } __setupper; // struct setupper
} // namespace setting
#ifdef __clock__
class
{
    std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln;
    std::string built_func, last_func; bool is_built = false;
  public:
    void build(int crt_ln, const std::string &crt_func)
    {
        is_built = true, last_pt = built_pt = std::chrono::system_clock::now(),  last_ln = built_ln = crt_ln, last_func = built_func = crt_func;
    }
    void set(int crt_ln, const std::string &crt_func)
    {
        if(is_built) last_pt = std::chrono::system_clock::now(), last_ln = crt_ln, last_func = crt_func;
        else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n";
    }
    void get(int crt_ln, const std::string &crt_func)
    {
        if(is_built)
        {
            std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now());
            long long diff = std::chrono::duration_cast<std::chrono::milliseconds>(crt_pt - last_pt).count();
            debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]";
            if(last_ln == built_ln) debug_stream << " (when built)";
            debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n";
            last_pt = built_pt, last_ln = built_ln, last_func = built_func;
        }
        else
        {
            debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n";
        }
    }
} myclock; // unnamed class
    #define build_clock() myclock.build(__LINE__, __func__)
    #define set_clock() myclock.set(__LINE__, __func__)
    #define get_clock() myclock.get(__LINE__, __func__)
#else
    #define build_clock() ((void)0)
    #define set_clock() ((void)0)
    #define get_clock() ((void)0)
#endif

namespace std
{
    // hash
    template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
    template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
    template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
    template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
    template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
    // iostream
    template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
    template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
    template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
    template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
    template <class... T> istream &operator>>(istream &is, tuple<T...> &t)  { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
    template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
    template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
    template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
    template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t)  { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
    template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std

#ifdef LOCAL
    #define dump(...)                                                              \
        debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n",       \
            dump_func(#__VA_ARGS__, __VA_ARGS__)
    template <class T> void dump_func(const char *ptr, const T &x)
    {
        debug_stream << '\t';
        for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ') debug_stream << c;
        debug_stream << " : " << x << '\n';
    }
    template <class T, class... rest_t> void dump_func(const char *ptr, const T &x, rest_t... rest)
    {
        debug_stream << '\t';
        for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ') debug_stream << c;
        debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...);
    }
#else
    #define dump(...) ((void)0)
#endif

template <class T> void read_range(T* __first, T* __second) { for(T* i = __first; i != __second; ++i) std::cin >> *i; }
template <class T> void write_range(T* __first, T* __second) { for(T* i = __first; i != __second; std::cout << (++i == __second ? '\n' : ' ')) std::cout << *i; }

// substitue y for x if x > y.
template <class T> inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitue y for x if x < y.
template <class T> inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search.
i64 bin(const std::function<bool(i64)> &pred, i64 ok, i64 ng)
{
    while(std::abs(ok - ng) > 1) { i64 mid = (ok + ng) / 2; (pred(mid) ? ok : ng) = mid; }
    return ok;
}
double bin(const std::function<bool(double)> &pred, double ok, double ng, const double eps)
{
    while(std::abs(ok - ng) > eps) { double mid = (ok + ng) / 2; (pred(mid) ? ok : ng) = mid; }
    return ok;
}
// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T *)array, (T *)(array + N), val); }
// reset all bits.
template <class A> void reset(A &array) { memset(array, 0, sizeof(array)); }


/* The main code follows. */

using namespace std;

#ifndef SEGMENT_TREE_HPP
#define SEGMENT_TREE_HPP
template <class Monoid>
class segment_tree
{
    class uniqueue
    {
        size_t *const que, *qbegin, *qend;
        bool *const inque;
      public:
        uniqueue(size_t n) : que(new size_t[n]), qbegin(que), qend(que), inque(new bool[n]{}) {}
        ~uniqueue() { delete[] que; delete[] inque; }
      	void clear() { qbegin = qend = que; }
        bool empty() const { return qbegin == qend; }
        bool push(size_t x)
        {
            if(inque[x]) return false;
            return inque[*qend++ = x] = true;
        }
        size_t pop() { return inque[*qbegin] = false, *qbegin++; }
    }; // class uniqueue

    using value_type = typename Monoid::value_type;
    Monoid *const monoid_ptr, &monoid;
    const size_t orig_n, ext_n;
    value_type *data;
    uniqueue que;

    void rebuild()
    {
        while(!que.empty())
        {
            const size_t f = que.pop(), p = f >> 1;
            if(p && que.push(p)) data[p] = monoid(data[f], data[f ^ 1]);
        }
        que.clear();
    }

    void left_bound(size_t idx, const std::function<bool(const value_type &)> &pred,
                    size_t k, size_t l, size_t r, value_type &now, size_t &res)
    {
        if(idx <= l || r < res) return;
        if(r <= idx)
        {
            const value_type nxt = monoid(data[k], now);
            if(pred(nxt))
            {
                res = l, now = nxt;
                return;
            }
        }
        if(r - l > 1)
        {
            left_bound(idx, pred, k << 1 ^ 1, (l + r) >> 1, r, now, res);
            left_bound(idx, pred, k << 1, l, (l + r) >> 1, now, res);
        }
    }

    void right_bound(size_t idx, const std::function<bool(const value_type &)> &pred,
                     size_t k, size_t l, size_t r, value_type &now, size_t &res)
    {
        if(idx >= r || l > res) return;
        if(l >= idx)
        {
            const value_type nxt = monoid(now, data[k]);
            if(pred(nxt))
            {
                res = r, now = nxt;
                return;
            }
        }
        if(r - l > 1)
        {
            right_bound(idx, pred, k << 1, l, (l + r) >> 1, now, res);
            right_bound(idx, pred, k << 1 ^ 1, (l + r) >> 1, r, now, res);
        }
    }

  public:
    segment_tree(size_t n) : monoid_ptr{new Monoid}, monoid{*monoid_ptr}, orig_n{n}, ext_n(n > 1 ? 1 << (32 - __builtin_clz(n - 1)) : 1), data(new value_type[ext_n << 1]), que(ext_n << 1)
    {
        std::fill_n(data, ext_n << 1, monoid.identity());
    }
    segment_tree(size_t n, Monoid &_monoid) : monoid_ptr{}, monoid{_monoid}, orig_n{n}, ext_n(n > 1 ? 1 << (32 - __builtin_clz(n - 1)) : 1), data(new value_type[ext_n << 1]), que(ext_n << 1)
    {
        std::fill_n(data, ext_n << 1, monoid.identity());
    }
    ~segment_tree() { if(monoid_ptr) delete monoid_ptr; delete[] data; }

    void build(value_type *__first, value_type *__last)
    {
        std::copy(__first, __last, &data[ext_n]);
        for(size_t i = ext_n; i; --i) data[i] = monoid(data[i << 1], data[i << 1 ^ 1]);
        que.clear();
    }

    template <class iterator>
    void build(iterator __first, iterator __last)
    {
        static_assert(std::is_same<typename std::iterator_traits<iterator>::value_type, value_type>::value, "iterator's value_type should be equal to Monoid's");
        std::copy(__first, __last, &data[ext_n]);
        for(size_t i = ext_n - 1; i; --i) data[i] = monoid(data[i << 1], data[i << 1 ^ 1]);
        que.clear();
    }

    value_type fold(size_t l, size_t r)
    {
        assert(r <= orig_n), rebuild();
        value_type leftval = monoid.identity(), rightval = monoid.identity();
        l |= ext_n, r += ext_n;
        while(l < r)
        {
            if(l & 1) leftval = monoid(leftval, data[l++]);
            if(r & 1) rightval = monoid(rightval, data[--r]);
            l >>= 1, r >>= 1;
        }
        return monoid(leftval, rightval);
    }

    value_type &operator[](size_t i) { assert(i < orig_n); return que.push(i |= ext_n), data[i]; }

    // minimum l where range [l, idx) meets the condition.
    size_t left_bound(size_t i, const std::function<bool(const value_type &)> &pred)
    {
        assert(i <= orig_n), rebuild();
        size_t res = i;
        value_type now = monoid.identity();
        left_bound(i, pred, 1, 0, ext_n, now, res);
        return res;
    }

    // maximum r where range [idx, r) meets the condition.
    size_t right_bound(size_t i, const std::function<bool(const value_type &)> &pred)
    {
        assert(i < orig_n), rebuild();
        size_t res = i;
        value_type now = monoid.identity();
        right_bound(i, pred, 1, 0, ext_n, now, res);
        return res < orig_n ? res : orig_n;
    }
}; // class segment_tree
#endif

template <class T>
struct plus_monoid
{
    using value_type = T;
    T identity()
    {
        return T(0);
    }
    T operator()(const T &x, const T &y)
    {
        return x+y;
    }
};


template <class T>
struct max_monoid
{
    using value_type = T;
    T identity()
    {
        // return std::numeric_limits<T>::min();
        return 0;
    }
    T operator()(const T &x, const T &y)
    {
        return std::max(x,y);
    }
};

struct solver
{

    solver()
    {
        int n; cin>>n;
        vector<int> a(n); cin>>a;
        const int m=sqrt((double)n);
        dump(m);

        bool many[1<<17]={};
        int cnt[1<<17]={};
        for(int &x : a)
        {
            --x;
            ++cnt[x];
            if(cnt[x] > m) many[x]=true;
        }

        i64 ans=0;

        for(int l=1; l<m*2 and l<=n; ++l)
        {
            segment_tree<max_monoid<int>> seg(100000);

            for(int i=0; i<n; ++i)
            {
                if(i>=l)
                {
                    int now=a[i-l];
                    if(!many[now])
                    {
                        seg[now]--;
                    }
                }

                int now=a[i];
                if(!many[now])
                {
                    seg[now]++;
                }

                if(i+1>=l) ans+=seg.fold(0,100000)*2>l;
            }

            dump(l,ans);
        }

        dump(ans);

        for(int i=0; i<100000; ++i)
        {
            if(!many[i])
            {
                continue;
            }

            segment_tree<plus_monoid<int>> seg(n*2+1);

            int now=0;
            seg[now+n]++;
            for(int x: a)
            {
                if(x==i)
                {
                    now++;
                }
                else
                {
                    now--;
                }
                ans+=seg.fold(0,now+n);
                seg[now+n]++;
            }
        }

        cout << ans << "\n";
    }
}; // struct solver


int main(int argc, char *argv[])
{
    u32 t; // loop count
#ifdef LOCAL
    t = 6;
#else
    t = 1; // single test case
    // t = -1; // infinite loop
    // cin >> t; // case number given
#endif

    while(t--) solver();
}
0