結果

問題 No.206 数の積集合を求めるクエリ
ユーザー jelljell
提出日時 2020-01-01 19:24:30
言語 C++14
(gcc 13.2.0 + boost 1.83.0)
結果
AC  
実行時間 61 ms / 7,000 ms
コード長 20,125 bytes
コンパイル時間 2,831 ms
コンパイル使用メモリ 195,884 KB
実行使用メモリ 17,668 KB
最終ジャッジ日時 2023-08-14 17:14:38
合計ジャッジ時間 6,428 ms
ジャッジサーバーID
(参考情報)
judge14 / judge12
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
4,376 KB
testcase_01 AC 2 ms
4,380 KB
testcase_02 AC 1 ms
4,376 KB
testcase_03 AC 1 ms
4,380 KB
testcase_04 AC 2 ms
4,380 KB
testcase_05 AC 2 ms
4,376 KB
testcase_06 AC 3 ms
4,376 KB
testcase_07 AC 3 ms
4,376 KB
testcase_08 AC 3 ms
4,380 KB
testcase_09 AC 3 ms
4,380 KB
testcase_10 AC 2 ms
4,380 KB
testcase_11 AC 2 ms
4,380 KB
testcase_12 AC 3 ms
4,376 KB
testcase_13 AC 3 ms
4,376 KB
testcase_14 AC 3 ms
4,380 KB
testcase_15 AC 3 ms
4,376 KB
testcase_16 AC 3 ms
4,376 KB
testcase_17 AC 54 ms
17,652 KB
testcase_18 AC 47 ms
17,628 KB
testcase_19 AC 53 ms
17,664 KB
testcase_20 AC 46 ms
17,592 KB
testcase_21 AC 48 ms
17,668 KB
testcase_22 AC 48 ms
17,584 KB
testcase_23 AC 53 ms
17,584 KB
testcase_24 AC 61 ms
17,640 KB
testcase_25 AC 60 ms
17,656 KB
testcase_26 AC 54 ms
17,576 KB
testcase_27 AC 50 ms
17,592 KB
testcase_28 AC 55 ms
17,580 KB
testcase_29 AC 55 ms
17,588 KB
testcase_30 AC 53 ms
17,584 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifdef LOCAL
    #define _GLIBCXX_DEBUG
    #define __clock__
#else
    #pragma GCC optimize("Ofast")
    // #define NDEBUG
#endif
#define __buffer_check__
#define __precision__ 10
#define iostream_untie true
#define debug_stream std::cerr

#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>

#define all(v) std::begin(v), std::end(v)
#define rall(v) std::rbegin(v), std::rend(v)
#define odd(n) ((n) & 1)
#define even(n) (not __odd(n))
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)

using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using pii = std::pair<i32, i32>; using pll = std::pair<i64, i64>;
template <class T> using heap = std::priority_queue<T>;
template <class T> using rheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using hashset = std::unordered_set<T>;
template <class Key, class Value> using hashmap = std::unordered_map<Key, Value>;

namespace setting
{
    using namespace std::chrono;
    system_clock::time_point start_time, end_time;
    long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }
    void print_elapsed_time() { debug_stream << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n"; }
    void buffer_check() { char bufc; if(std::cin >> bufc) debug_stream << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; }
    struct setupper
    {
        setupper()
        {
            if(iostream_untie) std::ios::sync_with_stdio(false), std::cin.tie(nullptr);
            std::cout << std::fixed << std::setprecision(__precision__);
    #ifdef stderr_path
            if(freopen(stderr_path, "a", stderr))
            {
                std::cerr << std::fixed << std::setprecision(__precision__);
            }
    #endif
    #ifdef stdout_path
            if(not freopen(stdout_path, "w", stdout))
            {
                freopen("CON", "w", stdout);
                debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdout file.\n";
            }
            std::cout << "";
    #endif
    #ifdef stdin_path
            if(not freopen(stdin_path, "r", stdin))
            {
                freopen("CON", "r", stdin);
                debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdin file.\n";
            }
    #endif
    #ifdef LOCAL
            debug_stream << "\n----- stderr at LOCAL -----\n\n";
            atexit(print_elapsed_time);
    #endif
    #ifdef __buffer_check__
            atexit(buffer_check);
    #endif
    #if defined(__clock__) || defined(LOCAL)
            start_time = system_clock::now();
    #endif
        }
    } __setupper; // struct setupper
} // namespace setting
#ifdef __clock__
class
{
    std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln;
    std::string built_func, last_func; bool is_built = false;
  public:
    void build(int crt_ln, const std::string &crt_func)
    {
        is_built = true, last_pt = built_pt = std::chrono::system_clock::now(), last_ln = built_ln = crt_ln, last_func = built_func = crt_func;
    }
    void set(int crt_ln, const std::string &crt_func)
    {
        if(is_built) last_pt = std::chrono::system_clock::now(), last_ln = crt_ln, last_func = crt_func;
        else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n";
    }
    void get(int crt_ln, const std::string &crt_func)
    {
        if(is_built)
        {
            std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now());
            long long diff = std::chrono::duration_cast<std::chrono::milliseconds>(crt_pt - last_pt).count();
            debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]";
            if(last_ln == built_ln) debug_stream << " (when built)";
            debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n";
            last_pt = built_pt, last_ln = built_ln, last_func = built_func;
        }
        else
        {
            debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n";
        }
    }
} myclock; // unnamed class
    #define build_clock() myclock.build(__LINE__, __func__)
    #define set_clock() myclock.set(__LINE__, __func__)
    #define get_clock() myclock.get(__LINE__, __func__)
#else
    #define build_clock() ((void)0)
    #define set_clock() ((void)0)
    #define get_clock() ((void)0)
#endif

namespace std
{
    // hash
    template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
    template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
    template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
    template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
    template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
    // iostream
    template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
    template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
    template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
    template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
    template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
    template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
    template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
    template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
    template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
    template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std

#ifdef LOCAL
    #define dump(...)                                                              \
        debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n",       \
            dump_func(#__VA_ARGS__, __VA_ARGS__)
    template <class T> void dump_func(const char *ptr, const T &x)
    {
        debug_stream << '\t';
        for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ') debug_stream << c;
        debug_stream << " : " << x << '\n';
    }
    template <class T, class... rest_t> void dump_func(const char *ptr, const T &x, rest_t... rest)
    {
        debug_stream << '\t';
        for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ') debug_stream << c;
        debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...);
    }
#else
    #define dump(...) ((void)0)
#endif

template <class T = int> T read() { T x; std::cin >> x; return x; }
template <class iterator> void read(iterator __first, iterator __last) { for(iterator i = __first; i != __last; ++i) std::cin >> *i; }
template <class iterator> void write(iterator __first, iterator __last) { for(iterator i = __first; i != __last; std::cout << (++i == __last ? "" : " ")) std::cout << *i; }

// substitute y for x if x > y.
template <class T> inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitute y for x if x < y.
template <class T> inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; }

// binary search on integers.
long long bin(long long __ok, long long __ng, const std::function<bool(long long)> &pred)
{
    while(std::abs(__ok - __ng) > 1)
    {
        long long mid{(__ok + __ng) / 2};
        (pred(mid) ? __ok : __ng) = mid;
    }
    return __ok;
}
// binary search on real numbers.
long double bin(long double __ok, long double __ng, const long double eps, const std::function<bool(long double)> &pred)
{
    while(std::abs(__ok - __ng) > eps)
    {
        long double mid{(__ok + __ng) / 2};
        (pred(mid) ? __ok : __ng) = mid;
    }
    return __ok;
}
// binary search on integers(with a class member function).
template <class X, class int_t>
long long bin(long long __ok, long long __ng, bool (X::*const pred)(int_t), X *const x)
{
    while(std::abs(__ok - __ng) > 1)
    {
        long long mid{(__ok + __ng) / 2};
        ((x->*pred)(mid) ? __ok : __ng) = mid;
    }
    return __ok;
}
// binary search on real numbers(with a class member function).
template <class X, class real_t>
long double bin(long double __ok, long double __ng, const long double eps, bool (X::*const pred)(real_t), X *const x)
{
    while(std::abs(__ok - __ng) > eps)
    {
        long double mid{(__ok + __ng) / 2};
        ((x->*pred)(mid) ? __ok : __ng) = mid;
    }
    return __ok;
}

// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }

// reset all bits.
template <class A> void reset(A &array) { memset(array, 0, sizeof(array)); }


/* The main code follows. */

using namespace std;

#ifndef FAST_FOURIER_TRANSFORM_HPP
#define FAST_FOURIER_TRANSFORM_HPP

#include <bits/stdc++.h>

namespace fast_Fourier_transform
{
    using real_t = double;

    class cmplx_t
    {
        real_t re, im;
        friend constexpr cmplx_t conj(cmplx_t x) { return x.im = -x.im, x; }
        friend std::istream &operator>>(std::istream &s, cmplx_t &x) { return s >> x.re >> x.im; }
        friend std::ostream &operator<<(std::ostream &s, const cmplx_t &x) { return s << x.re << ' ' << x.im; }
      public:
        constexpr cmplx_t() : re{real_t{}}, im{real_t{}} {}
        constexpr cmplx_t(real_t _re) : re{_re}, im{real_t{}} {}
        constexpr cmplx_t(real_t _re, real_t _im) : re{_re}, im{_im} {}
        constexpr cmplx_t(std::complex<real_t> x) : re{x.real()}, im{x.imag()} {}
        constexpr real_t real() const { return re; }
        constexpr void real(const real_t _re) { re = _re; }
        constexpr real_t imag() const { return im; }
        constexpr void imag(const real_t _im) { im = _im; }
        constexpr cmplx_t operator-() const { return cmplx_t(-re, -im); }
        constexpr cmplx_t &operator+=(const cmplx_t &x) { return re += x.re, im += x.im, *this; }
        constexpr cmplx_t &operator-=(const cmplx_t &x) { return *this += -x; }
        constexpr cmplx_t &operator*=(const cmplx_t &x) { real_t _re{re * x.re - im * x.im}; return im = im * x.re + x.im * re, re = _re, *this; }
        constexpr cmplx_t &operator*=(real_t x) { return re *= x, im *= x, *this; }
        constexpr cmplx_t &operator/=(const cmplx_t &x) { return conj(*this) /= re * re + im * im; }
        constexpr cmplx_t &operator/=(real_t x) { return re /= x, im /= x, *this; }
        constexpr cmplx_t operator+(const cmplx_t &x) const { return cmplx_t(*this) += x; }
        constexpr cmplx_t operator-(const cmplx_t &x) const { return cmplx_t(*this) -= x; }
        constexpr cmplx_t operator*(const cmplx_t &x) const { return cmplx_t(*this) *= x; }
        constexpr cmplx_t operator*(real_t x) const { return cmplx_t(*this) *= x; }
        constexpr cmplx_t operator/(const cmplx_t &x) const { return cmplx_t(*this) /= x; }
        constexpr cmplx_t operator/(real_t x) const { return cmplx_t(*this) /= x; }
    };

    using poly_t = std::vector<cmplx_t>;

    void dft(poly_t &f)
    {
        const size_t n{f.size()}, mask{n - 1};
        assert(__builtin_popcount(n) == 1); // degree of f must be a power of two.
        static poly_t g; g.resize(n);
        constexpr cmplx_t zeta[31] =
        {
            {1, 0}, {-1, 0}, {0, 1},
            {0.70710678118654752438189403651, 0.70710678118654752443610414514},
            {0.92387953251128675610142140795, 0.38268343236508977172325753068},
            {0.98078528040323044911909938781, 0.19509032201612826785692544201},
            {0.99518472667219688623102546998, 0.09801714032956060199569840382},
            {0.99879545620517239270077028412, 0.04906767432741801425693899119},
            {0.99969881869620422009748220149, 0.02454122852291228803212346128},
            {0.99992470183914454093764001552, 0.01227153828571992607945510345},
            {0.99998117528260114264494415325, 0.00613588464915447535972750246},
            {0.99999529380957617150137498041, 0.00306795676296597627029751672},
            {0.99999882345170190993313003025, 0.00153398018628476561237225788},
            {0.99999970586288221914474799723, 0.00076699031874270452695124765},
            {0.99999992646571785113833452651, 0.00038349518757139558906815188},
            {0.99999998161642929381167504976, 0.00019174759731070330743679009},
            {0.99999999540410731290905263501, 0.00009587379909597734587360460},
            {0.99999999885102682753608427379, 0.00004793689960306688454884772},
            {0.99999999971275670682981095982, 0.00002396844980841821872882467},
            {0.99999999992818917670745273995, 0.00001198422490506970642183282},
            {0.99999999998204729416331065783, 0.00000599211245264242784278378},
            {0.99999999999551182356793271877, 0.00000299605622633466075058210},
            {0.99999999999887795586487812538, 0.00000149802811316901122883643},
            {0.99999999999971948897977205850, 0.00000074901405658471572113723},
            {0.99999999999992987223139048746, 0.00000037450702829238412391495},
            {0.99999999999998246807140014902, 0.00000018725351414619534486931},
            {0.99999999999999561700429751010, 0.00000009362675707309808280024},
            {0.99999999999999890425107437752, 0.00000004681337853654909269501},
            {0.99999999999999972607632112153, 0.00000002340668926827455275977},
            {0.99999999999999993153263280754, 0.00000001170334463413727718121},
            {0.99999999999999998286960567472, 0.00000000585167231706863869077}
        };
        for(size_t i{n >> 1}, ii{1}; i; i >>= 1, ++ii, swap(f, g))
        {
            cmplx_t powzeta{1};
            for(size_t j{}; j < n; powzeta *= zeta[ii])
            {
                for(size_t k{}, x{mask & j << 1}, y{mask & (i + (j << 1))}; k < i; ++k, ++j, ++x, ++y)
                {
                    g[j] = f[x] + powzeta * f[y];
                }
            }
        }
    }

    void idft(poly_t &f) { dft(f), reverse(next(f.begin()), f.end()); for(cmplx_t &e : f) e /= f.size(); }

    poly_t convolute(poly_t f, poly_t g)
    {
        if(f.empty() || g.empty()) return poly_t();
        const size_t deg_f{f.size() - 1}, deg_g{g.size() - 1}, deg_h{deg_f + deg_g}, n(1u << (32 - __builtin_clz(deg_h)));
        static poly_t h;
        f.resize(n, 0), g.resize(n, 0), h.resize(n);
        dft(f), dft(g);
        for(size_t i{}; i < n; ++i) h[i] = f[i] * g[i];
        idft(h); h.resize(deg_h + 1);
        return h;
    }

    std::vector<real_t> convolute(const std::vector<real_t> &f, const std::vector<real_t> &g)
    {
        if(f.empty() || g.empty()) return std::vector<real_t>();
        const size_t deg_f{f.size() - 1}, deg_g{g.size() - 1}, deg_h{deg_f + deg_g}, n(1u << (32 - __builtin_clz(deg_h)));
        static std::vector<real_t> h; h.resize(deg_h + 1);
        static poly_t p; p.assign(n, 0);
        for(size_t i{}; i <= deg_f; ++i) p[i].real(f[i]);
        for(size_t i{}; i <= deg_g; ++i) p[i].imag(g[i]);
        dft(p); // perform discrete Fourier transformation on p = f + i*g.
        static poly_t q; q.resize(n);
        for(size_t i{}; i < n; ++i) { size_t j{i ? n - i : 0}; q[i] = (p[i] + conj(p[j])) * (p[i] - conj(p[j])); }
        idft(q);
        for(size_t i{}; i <= deg_h; ++i) h[i] = q[i].imag() / 4;
        return h;
    }

    std::vector<int_least64_t> convolute(const std::vector<int_least64_t> &f, const std::vector<int_least64_t> &g)
    {
        if(f.empty() || g.empty()) return std::vector<int_least64_t>();
        const size_t deg_f{f.size() - 1}, deg_g{g.size() - 1}, deg_h{deg_f + deg_g}, n(1u << (32 - __builtin_clz(deg_h)));
        static std::vector<int_least64_t> h; h.resize(deg_h + 1);
        static poly_t p; p.assign(n, 0);
        for(size_t i{}; i <= deg_f; ++i) p[i].real(f[i]);
        for(size_t i{}; i <= deg_g; ++i) p[i].imag(g[i]);
        dft(p); // perform discrete Fourier transformation on p = f + i*g.
        static poly_t q; q.resize(n);
        for(size_t i{}; i < n; ++i) { size_t j{i ? n - i : 0}; q[i] = (p[i] + conj(p[j])) * (p[i] - conj(p[j])); }
        idft(q);
        for(size_t i{}; i <= deg_h; ++i) h[i] = round(q[i].imag() / 4);
        return h;
    }

    std::vector<int_least32_t> convolute(const std::vector<int_least32_t> &f, const std::vector<int_least32_t> &g)
    {
        if(f.empty() || g.empty()) return std::vector<int_least32_t>();
        const size_t deg_f{f.size() - 1}, deg_g{g.size() - 1}, deg_h{deg_f + deg_g}, n(1u << (32 - __builtin_clz(deg_h)));
        static std::vector<int_least32_t> h; h.resize(deg_h + 1);
        static poly_t p; p.assign(n, 0);
        for(size_t i{}; i <= deg_f; ++i) p[i].real(f[i]);
        for(size_t i{}; i <= deg_g; ++i) p[i].imag(g[i]);
        dft(p); // perform discrete Fourier transformation on p = f + i*g.
        static poly_t q; q.resize(n);
        for(size_t i{}; i < n; ++i) { size_t j{i ? n - i : 0}; q[i] = (p[i] + conj(p[j])) * (p[i] - conj(p[j])); }
        idft(q);
        for(size_t i{}; i <= deg_h; ++i) h[i] = round(q[i].imag() / 4);
        return h;
    }
} // namespace fast_Fourier_transform

#endif

using namespace fast_Fourier_transform;

struct solver
{
    solver()
    {
        int l,m,n; cin>>l>>m>>n;
        vector<int> a(n),b(n);
        for(int i=0; i<l; ++i)
        {
            int x; cin>>x;
            a[n-x]=1;
        }
        for(int i=0; i<m; ++i)
        {
            int x; cin>>x; --x;
            b[x]=1;
        }
        int Q; cin>>Q;
        auto c=convolute(a,b);
        dump(c);
        for(int i=1; i<=Q; ++i)
        {
            cout << c[n-i] << "\n";
        }
    }
}; // struct solver


int main(int argc, char *argv[])
{
    u32 t; // loop count
#ifdef LOCAL
    t = 3;
#else
    t = 1; // single test case
#endif
    // t = -1; // infinite loop
    // cin >> t; // case number given

    while(t--)
    {
        solver();
    }
}
0