結果
| 問題 |
No.206 数の積集合を求めるクエリ
|
| コンテスト | |
| ユーザー |
jell
|
| 提出日時 | 2020-01-01 19:24:30 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 69 ms / 7,000 ms |
| コード長 | 20,125 bytes |
| コンパイル時間 | 2,777 ms |
| コンパイル使用メモリ | 198,024 KB |
| 実行使用メモリ | 18,048 KB |
| 最終ジャッジ日時 | 2024-11-22 16:16:40 |
| 合計ジャッジ時間 | 5,451 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 28 |
ソースコード
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#define __clock__
#else
#pragma GCC optimize("Ofast")
// #define NDEBUG
#endif
#define __buffer_check__
#define __precision__ 10
#define iostream_untie true
#define debug_stream std::cerr
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#define all(v) std::begin(v), std::end(v)
#define rall(v) std::rbegin(v), std::rend(v)
#define odd(n) ((n) & 1)
#define even(n) (not __odd(n))
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using pii = std::pair<i32, i32>; using pll = std::pair<i64, i64>;
template <class T> using heap = std::priority_queue<T>;
template <class T> using rheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using hashset = std::unordered_set<T>;
template <class Key, class Value> using hashmap = std::unordered_map<Key, Value>;
namespace setting
{
using namespace std::chrono;
system_clock::time_point start_time, end_time;
long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }
void print_elapsed_time() { debug_stream << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n"; }
void buffer_check() { char bufc; if(std::cin >> bufc) debug_stream << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; }
struct setupper
{
setupper()
{
if(iostream_untie) std::ios::sync_with_stdio(false), std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(__precision__);
#ifdef stderr_path
if(freopen(stderr_path, "a", stderr))
{
std::cerr << std::fixed << std::setprecision(__precision__);
}
#endif
#ifdef stdout_path
if(not freopen(stdout_path, "w", stdout))
{
freopen("CON", "w", stdout);
debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdout file.\n";
}
std::cout << "";
#endif
#ifdef stdin_path
if(not freopen(stdin_path, "r", stdin))
{
freopen("CON", "r", stdin);
debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdin file.\n";
}
#endif
#ifdef LOCAL
debug_stream << "\n----- stderr at LOCAL -----\n\n";
atexit(print_elapsed_time);
#endif
#ifdef __buffer_check__
atexit(buffer_check);
#endif
#if defined(__clock__) || defined(LOCAL)
start_time = system_clock::now();
#endif
}
} __setupper; // struct setupper
} // namespace setting
#ifdef __clock__
class
{
std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln;
std::string built_func, last_func; bool is_built = false;
public:
void build(int crt_ln, const std::string &crt_func)
{
is_built = true, last_pt = built_pt = std::chrono::system_clock::now(), last_ln = built_ln = crt_ln, last_func = built_func = crt_func;
}
void set(int crt_ln, const std::string &crt_func)
{
if(is_built) last_pt = std::chrono::system_clock::now(), last_ln = crt_ln, last_func = crt_func;
else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n";
}
void get(int crt_ln, const std::string &crt_func)
{
if(is_built)
{
std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now());
long long diff = std::chrono::duration_cast<std::chrono::milliseconds>(crt_pt - last_pt).count();
debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]";
if(last_ln == built_ln) debug_stream << " (when built)";
debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n";
last_pt = built_pt, last_ln = built_ln, last_func = built_func;
}
else
{
debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n";
}
}
} myclock; // unnamed class
#define build_clock() myclock.build(__LINE__, __func__)
#define set_clock() myclock.set(__LINE__, __func__)
#define get_clock() myclock.get(__LINE__, __func__)
#else
#define build_clock() ((void)0)
#define set_clock() ((void)0)
#define get_clock() ((void)0)
#endif
namespace std
{
// hash
template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
// iostream
template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std
#ifdef LOCAL
#define dump(...) \
debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", \
dump_func(#__VA_ARGS__, __VA_ARGS__)
template <class T> void dump_func(const char *ptr, const T &x)
{
debug_stream << '\t';
for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ') debug_stream << c;
debug_stream << " : " << x << '\n';
}
template <class T, class... rest_t> void dump_func(const char *ptr, const T &x, rest_t... rest)
{
debug_stream << '\t';
for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ') debug_stream << c;
debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...);
}
#else
#define dump(...) ((void)0)
#endif
template <class T = int> T read() { T x; std::cin >> x; return x; }
template <class iterator> void read(iterator __first, iterator __last) { for(iterator i = __first; i != __last; ++i) std::cin >> *i; }
template <class iterator> void write(iterator __first, iterator __last) { for(iterator i = __first; i != __last; std::cout << (++i == __last ? "" : " ")) std::cout << *i; }
// substitute y for x if x > y.
template <class T> inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitute y for x if x < y.
template <class T> inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search on integers.
long long bin(long long __ok, long long __ng, const std::function<bool(long long)> &pred)
{
while(std::abs(__ok - __ng) > 1)
{
long long mid{(__ok + __ng) / 2};
(pred(mid) ? __ok : __ng) = mid;
}
return __ok;
}
// binary search on real numbers.
long double bin(long double __ok, long double __ng, const long double eps, const std::function<bool(long double)> &pred)
{
while(std::abs(__ok - __ng) > eps)
{
long double mid{(__ok + __ng) / 2};
(pred(mid) ? __ok : __ng) = mid;
}
return __ok;
}
// binary search on integers(with a class member function).
template <class X, class int_t>
long long bin(long long __ok, long long __ng, bool (X::*const pred)(int_t), X *const x)
{
while(std::abs(__ok - __ng) > 1)
{
long long mid{(__ok + __ng) / 2};
((x->*pred)(mid) ? __ok : __ng) = mid;
}
return __ok;
}
// binary search on real numbers(with a class member function).
template <class X, class real_t>
long double bin(long double __ok, long double __ng, const long double eps, bool (X::*const pred)(real_t), X *const x)
{
while(std::abs(__ok - __ng) > eps)
{
long double mid{(__ok + __ng) / 2};
((x->*pred)(mid) ? __ok : __ng) = mid;
}
return __ok;
}
// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }
// reset all bits.
template <class A> void reset(A &array) { memset(array, 0, sizeof(array)); }
/* The main code follows. */
using namespace std;
#ifndef FAST_FOURIER_TRANSFORM_HPP
#define FAST_FOURIER_TRANSFORM_HPP
#include <bits/stdc++.h>
namespace fast_Fourier_transform
{
using real_t = double;
class cmplx_t
{
real_t re, im;
friend constexpr cmplx_t conj(cmplx_t x) { return x.im = -x.im, x; }
friend std::istream &operator>>(std::istream &s, cmplx_t &x) { return s >> x.re >> x.im; }
friend std::ostream &operator<<(std::ostream &s, const cmplx_t &x) { return s << x.re << ' ' << x.im; }
public:
constexpr cmplx_t() : re{real_t{}}, im{real_t{}} {}
constexpr cmplx_t(real_t _re) : re{_re}, im{real_t{}} {}
constexpr cmplx_t(real_t _re, real_t _im) : re{_re}, im{_im} {}
constexpr cmplx_t(std::complex<real_t> x) : re{x.real()}, im{x.imag()} {}
constexpr real_t real() const { return re; }
constexpr void real(const real_t _re) { re = _re; }
constexpr real_t imag() const { return im; }
constexpr void imag(const real_t _im) { im = _im; }
constexpr cmplx_t operator-() const { return cmplx_t(-re, -im); }
constexpr cmplx_t &operator+=(const cmplx_t &x) { return re += x.re, im += x.im, *this; }
constexpr cmplx_t &operator-=(const cmplx_t &x) { return *this += -x; }
constexpr cmplx_t &operator*=(const cmplx_t &x) { real_t _re{re * x.re - im * x.im}; return im = im * x.re + x.im * re, re = _re, *this; }
constexpr cmplx_t &operator*=(real_t x) { return re *= x, im *= x, *this; }
constexpr cmplx_t &operator/=(const cmplx_t &x) { return conj(*this) /= re * re + im * im; }
constexpr cmplx_t &operator/=(real_t x) { return re /= x, im /= x, *this; }
constexpr cmplx_t operator+(const cmplx_t &x) const { return cmplx_t(*this) += x; }
constexpr cmplx_t operator-(const cmplx_t &x) const { return cmplx_t(*this) -= x; }
constexpr cmplx_t operator*(const cmplx_t &x) const { return cmplx_t(*this) *= x; }
constexpr cmplx_t operator*(real_t x) const { return cmplx_t(*this) *= x; }
constexpr cmplx_t operator/(const cmplx_t &x) const { return cmplx_t(*this) /= x; }
constexpr cmplx_t operator/(real_t x) const { return cmplx_t(*this) /= x; }
};
using poly_t = std::vector<cmplx_t>;
void dft(poly_t &f)
{
const size_t n{f.size()}, mask{n - 1};
assert(__builtin_popcount(n) == 1); // degree of f must be a power of two.
static poly_t g; g.resize(n);
constexpr cmplx_t zeta[31] =
{
{1, 0}, {-1, 0}, {0, 1},
{0.70710678118654752438189403651, 0.70710678118654752443610414514},
{0.92387953251128675610142140795, 0.38268343236508977172325753068},
{0.98078528040323044911909938781, 0.19509032201612826785692544201},
{0.99518472667219688623102546998, 0.09801714032956060199569840382},
{0.99879545620517239270077028412, 0.04906767432741801425693899119},
{0.99969881869620422009748220149, 0.02454122852291228803212346128},
{0.99992470183914454093764001552, 0.01227153828571992607945510345},
{0.99998117528260114264494415325, 0.00613588464915447535972750246},
{0.99999529380957617150137498041, 0.00306795676296597627029751672},
{0.99999882345170190993313003025, 0.00153398018628476561237225788},
{0.99999970586288221914474799723, 0.00076699031874270452695124765},
{0.99999992646571785113833452651, 0.00038349518757139558906815188},
{0.99999998161642929381167504976, 0.00019174759731070330743679009},
{0.99999999540410731290905263501, 0.00009587379909597734587360460},
{0.99999999885102682753608427379, 0.00004793689960306688454884772},
{0.99999999971275670682981095982, 0.00002396844980841821872882467},
{0.99999999992818917670745273995, 0.00001198422490506970642183282},
{0.99999999998204729416331065783, 0.00000599211245264242784278378},
{0.99999999999551182356793271877, 0.00000299605622633466075058210},
{0.99999999999887795586487812538, 0.00000149802811316901122883643},
{0.99999999999971948897977205850, 0.00000074901405658471572113723},
{0.99999999999992987223139048746, 0.00000037450702829238412391495},
{0.99999999999998246807140014902, 0.00000018725351414619534486931},
{0.99999999999999561700429751010, 0.00000009362675707309808280024},
{0.99999999999999890425107437752, 0.00000004681337853654909269501},
{0.99999999999999972607632112153, 0.00000002340668926827455275977},
{0.99999999999999993153263280754, 0.00000001170334463413727718121},
{0.99999999999999998286960567472, 0.00000000585167231706863869077}
};
for(size_t i{n >> 1}, ii{1}; i; i >>= 1, ++ii, swap(f, g))
{
cmplx_t powzeta{1};
for(size_t j{}; j < n; powzeta *= zeta[ii])
{
for(size_t k{}, x{mask & j << 1}, y{mask & (i + (j << 1))}; k < i; ++k, ++j, ++x, ++y)
{
g[j] = f[x] + powzeta * f[y];
}
}
}
}
void idft(poly_t &f) { dft(f), reverse(next(f.begin()), f.end()); for(cmplx_t &e : f) e /= f.size(); }
poly_t convolute(poly_t f, poly_t g)
{
if(f.empty() || g.empty()) return poly_t();
const size_t deg_f{f.size() - 1}, deg_g{g.size() - 1}, deg_h{deg_f + deg_g}, n(1u << (32 - __builtin_clz(deg_h)));
static poly_t h;
f.resize(n, 0), g.resize(n, 0), h.resize(n);
dft(f), dft(g);
for(size_t i{}; i < n; ++i) h[i] = f[i] * g[i];
idft(h); h.resize(deg_h + 1);
return h;
}
std::vector<real_t> convolute(const std::vector<real_t> &f, const std::vector<real_t> &g)
{
if(f.empty() || g.empty()) return std::vector<real_t>();
const size_t deg_f{f.size() - 1}, deg_g{g.size() - 1}, deg_h{deg_f + deg_g}, n(1u << (32 - __builtin_clz(deg_h)));
static std::vector<real_t> h; h.resize(deg_h + 1);
static poly_t p; p.assign(n, 0);
for(size_t i{}; i <= deg_f; ++i) p[i].real(f[i]);
for(size_t i{}; i <= deg_g; ++i) p[i].imag(g[i]);
dft(p); // perform discrete Fourier transformation on p = f + i*g.
static poly_t q; q.resize(n);
for(size_t i{}; i < n; ++i) { size_t j{i ? n - i : 0}; q[i] = (p[i] + conj(p[j])) * (p[i] - conj(p[j])); }
idft(q);
for(size_t i{}; i <= deg_h; ++i) h[i] = q[i].imag() / 4;
return h;
}
std::vector<int_least64_t> convolute(const std::vector<int_least64_t> &f, const std::vector<int_least64_t> &g)
{
if(f.empty() || g.empty()) return std::vector<int_least64_t>();
const size_t deg_f{f.size() - 1}, deg_g{g.size() - 1}, deg_h{deg_f + deg_g}, n(1u << (32 - __builtin_clz(deg_h)));
static std::vector<int_least64_t> h; h.resize(deg_h + 1);
static poly_t p; p.assign(n, 0);
for(size_t i{}; i <= deg_f; ++i) p[i].real(f[i]);
for(size_t i{}; i <= deg_g; ++i) p[i].imag(g[i]);
dft(p); // perform discrete Fourier transformation on p = f + i*g.
static poly_t q; q.resize(n);
for(size_t i{}; i < n; ++i) { size_t j{i ? n - i : 0}; q[i] = (p[i] + conj(p[j])) * (p[i] - conj(p[j])); }
idft(q);
for(size_t i{}; i <= deg_h; ++i) h[i] = round(q[i].imag() / 4);
return h;
}
std::vector<int_least32_t> convolute(const std::vector<int_least32_t> &f, const std::vector<int_least32_t> &g)
{
if(f.empty() || g.empty()) return std::vector<int_least32_t>();
const size_t deg_f{f.size() - 1}, deg_g{g.size() - 1}, deg_h{deg_f + deg_g}, n(1u << (32 - __builtin_clz(deg_h)));
static std::vector<int_least32_t> h; h.resize(deg_h + 1);
static poly_t p; p.assign(n, 0);
for(size_t i{}; i <= deg_f; ++i) p[i].real(f[i]);
for(size_t i{}; i <= deg_g; ++i) p[i].imag(g[i]);
dft(p); // perform discrete Fourier transformation on p = f + i*g.
static poly_t q; q.resize(n);
for(size_t i{}; i < n; ++i) { size_t j{i ? n - i : 0}; q[i] = (p[i] + conj(p[j])) * (p[i] - conj(p[j])); }
idft(q);
for(size_t i{}; i <= deg_h; ++i) h[i] = round(q[i].imag() / 4);
return h;
}
} // namespace fast_Fourier_transform
#endif
using namespace fast_Fourier_transform;
struct solver
{
solver()
{
int l,m,n; cin>>l>>m>>n;
vector<int> a(n),b(n);
for(int i=0; i<l; ++i)
{
int x; cin>>x;
a[n-x]=1;
}
for(int i=0; i<m; ++i)
{
int x; cin>>x; --x;
b[x]=1;
}
int Q; cin>>Q;
auto c=convolute(a,b);
dump(c);
for(int i=1; i<=Q; ++i)
{
cout << c[n-i] << "\n";
}
}
}; // struct solver
int main(int argc, char *argv[])
{
u32 t; // loop count
#ifdef LOCAL
t = 3;
#else
t = 1; // single test case
#endif
// t = -1; // infinite loop
// cin >> t; // case number given
while(t--)
{
solver();
}
}
jell