結果
| 問題 |
No.184 たのしい排他的論理和(HARD)
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2020-01-04 12:54:26 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 60 ms / 5,000 ms |
| コード長 | 3,258 bytes |
| コンパイル時間 | 3,037 ms |
| コンパイル使用メモリ | 195,812 KB |
| 最終ジャッジ日時 | 2025-01-08 16:19:47 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 34 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
template <typename T> using posteriority_queue = priority_queue<T, vector<T>, greater<T> >;
const int INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3fLL;
const double EPS = 1e-8;
const int MOD = 1000000007;
// const int MOD = 998244353;
const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
// const int dy[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
int popcount(int val) { return __builtin_popcount(val); }
int popcountll(ll val) { return __builtin_popcountll(val); }
template <typename T> void unique(vector<T> &a) { a.erase(unique(ALL(a)), a.end()); }
struct IOSetup {
IOSetup() {
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
cout << fixed << setprecision(20);
}
} iosetup;
const int COL = 61;
struct BinaryMatrix {
int m, n;
BinaryMatrix(int m, int n = COL, bool def = false) : m(m), n(n), dat(m, bitset<COL>(0)) {
if (def) {
REP(i, m) REP(j, n) dat[i][j] = 1;
}
}
BinaryMatrix pow(ll exponent) {
BinaryMatrix tmp = *this, res(n, n);
REP(i, n) res[i][i] = 1;
while (exponent > 0) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
exponent >>= 1;
}
return res;
}
inline const bitset<COL> &operator[](const int idx) const { return dat[idx]; }
inline bitset<COL> &operator[](const int idx) { return dat[idx]; }
BinaryMatrix &operator=(const BinaryMatrix &rhs) {
m = rhs.m;
n = rhs.n;
dat.resize(m);
REP(i, m) dat[i] = rhs[i];
return *this;
}
BinaryMatrix &operator+=(const BinaryMatrix &rhs) {
REP(i, m) dat[i] ^= rhs[i];
return *this;
}
BinaryMatrix &operator*=(const BinaryMatrix &rhs) {
int height = m, width = rhs.n;
BinaryMatrix t_rhs(rhs.n, rhs.m), res(height, width);
REP(i, rhs.n) REP(j, rhs.m) t_rhs[i][j] = rhs[j][i];
REP(i, height) REP(j, width) res[i][j] = ((dat[i] & t_rhs[j]).count() & 1);
*this = res;
return *this;
}
BinaryMatrix operator+(const BinaryMatrix &rhs) const { return BinaryMatrix(*this) += rhs; }
BinaryMatrix operator*(const BinaryMatrix &rhs) const { return BinaryMatrix(*this) *= rhs; }
private:
vector<bitset<COL> > dat;
};
int gauss_jordan(BinaryMatrix &mat, bool is_extended = false) {
int rank = 0;
REP(col, mat.n) {
if (is_extended && col == mat.n - 1) break;
int pivot = -1;
FOR(row, rank, mat.m) {
if (mat[row][col]) {
pivot = row;
break;
}
}
if (pivot == -1) continue;
swap(mat[rank], mat[pivot]);
REP(row, mat.m) {
if (row != rank && mat[row][col]) mat[row] ^= mat[rank];
}
++rank;
}
return rank;
}
int main() {
int n; cin >> n;
BinaryMatrix mat(n);
REP(i, n) {
ll a; cin >> a;
mat[i] = bitset<COL>(a);
}
int rank = gauss_jordan(mat);
ll ans = 1;
REP(_, rank) ans <<= 1;
cout << ans << '\n';
return 0;
}
emthrm