結果
問題 | No.963 門松列列(2) |
ユーザー | risujiroh |
提出日時 | 2020-01-05 21:44:52 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 288 ms / 3,000 ms |
コード長 | 6,937 bytes |
コンパイル時間 | 2,229 ms |
コンパイル使用メモリ | 183,572 KB |
実行使用メモリ | 18,112 KB |
最終ジャッジ日時 | 2024-11-22 23:33:01 |
合計ジャッジ時間 | 3,815 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 11 |
ソースコード
#include <bits/stdc++.h>using namespace std;template <class T> vector<T> operator-(vector<T> a) {for (auto&& e : a) e = -e;return a;}template <class T> vector<T>& operator+=(vector<T>& l, const vector<T>& r) {l.resize(max(l.size(), r.size()));for (int i = 0; i < (int)r.size(); ++i) l[i] += r[i];return l;}template <class T> vector<T> operator+(vector<T> l, const vector<T>& r) {return l += r;}template <class T> vector<T>& operator-=(vector<T>& l, const vector<T>& r) {l.resize(max(l.size(), r.size()));for (int i = 0; i < (int)r.size(); ++i) l[i] -= r[i];return l;}template <class T> vector<T> operator-(vector<T> l, const vector<T>& r) {return l -= r;}template <class T> vector<T> operator*(const vector<T>& l, const vector<T>& r) {if (l.empty() or r.empty()) return {};vector<T> res(l.size() + r.size() - 1);for (int i = 0; i < (int)l.size(); ++i)for (int j = 0; j < (int)r.size(); ++j) res[i + j] += l[i] * r[j];return res;}template <class T> vector<T>& operator*=(vector<T>& l, const vector<T>& r) {return l = l * r;}template <class T> vector<T> inverse(const vector<T>& a) {assert(not a.empty() and not (a[0] == 0));vector<T> b{1 / a[0]};while (b.size() < a.size()) {vector<T> x(begin(a), begin(a) + min(a.size(), 2 * b.size()));x *= b * b;b.resize(2 * b.size());for (auto i = b.size() / 2; i < min(x.size(), b.size()); ++i) b[i] = -x[i];}b.resize(a.size());return b;}template <class T> vector<T> operator/(vector<T> l, vector<T> r) {if (l.size() < r.size()) return {};reverse(begin(l), end(l)), reverse(begin(r), end(r));int n = l.size() - r.size() + 1;l.resize(n), r.resize(n);l *= inverse(r);return {rend(l) - n, rend(l)};}template <class T> vector<T>& operator/=(vector<T>& l, const vector<T>& r) {return l = l / r;}template <class T> vector<T> operator%(vector<T> l, const vector<T>& r) {if (l.size() < r.size()) return l;l -= l / r * r;l.resize(r.size() - 1);return l;}template <class T> vector<T>& operator%=(vector<T>& l, const vector<T>& r) {return l = l % r;}template <class T> vector<T> derivative(const vector<T>& a) {vector<T> res(max((int)a.size() - 1, 0));for (int i = 0; i < (int)res.size(); ++i) res[i] = (i + 1) * a[i + 1];return res;}template <class T> vector<T> primitive(const vector<T>& a) {vector<T> res(a.size() + 1);for (int i = 1; i < (int)res.size(); ++i) res[i] = a[i - 1] / i;return res;}template <class T> vector<T> logarithm(const vector<T>& a) {assert(not a.empty() and a[0] == 1);auto res = primitive(derivative(a) * inverse(a));res.resize(a.size());return res;}template <class T> vector<T> exponent(const vector<T>& a) {assert(a.empty() or a[0] == 0);vector<T> b{1};while (b.size() < a.size()) {vector<T> x(begin(a), begin(a) + min(a.size(), 2 * b.size()));x[0] += 1;b.resize(2 * b.size());x -= logarithm(b);x *= {begin(b), begin(b) + b.size() / 2};for (auto i = b.size() / 2; i < min(x.size(), b.size()); ++i) b[i] = x[i];}b.resize(a.size());return b;}template <class T, class F = multiplies<T>>T power(T a, long long n, F op = multiplies<T>(), T e = 1) {assert(n >= 0);T res = e;while (n) {if (n & 1) res = op(res, a);if (n >>= 1) a = op(a, a);}return res;}template <unsigned Mod> struct Modular {using M = Modular;unsigned v;Modular(long long a = 0) : v((a %= Mod) < 0 ? a + Mod : a) {}M operator-() const { return M() -= *this; }M& operator+=(M r) { if ((v += r.v) >= Mod) v -= Mod; return *this; }M& operator-=(M r) { if ((v += Mod - r.v) >= Mod) v -= Mod; return *this; }M& operator*=(M r) { v = (uint64_t)v * r.v % Mod; return *this; }M& operator/=(M r) { return *this *= power(r, Mod - 2); }friend M operator+(M l, M r) { return l += r; }friend M operator-(M l, M r) { return l -= r; }friend M operator*(M l, M r) { return l *= r; }friend M operator/(M l, M r) { return l /= r; }friend bool operator==(M l, M r) { return l.v == r.v; }};template <unsigned Mod> void ntt(vector<Modular<Mod>>& a, bool inverse) {static vector<Modular<Mod>> dt(30), idt(30);if (dt[0] == 0) {Modular<Mod> root = 2;while (power(root, (Mod - 1) / 2) == 1) root += 1;for (int i = 0; i < 30; ++i)dt[i] = -power(root, (Mod - 1) >> (i + 2)), idt[i] = 1 / dt[i];}int n = a.size();assert((n & (n - 1)) == 0);if (not inverse) {for (int w = n; w >>= 1; ) {Modular<Mod> t = 1;for (int s = 0, k = 0; s < n; s += 2 * w) {for (int i = s, j = s + w; i < s + w; ++i, ++j) {auto x = a[i], y = a[j] * t;if (x.v >= Mod) x.v -= Mod;a[i].v = x.v + y.v, a[j].v = x.v + (Mod - y.v);}t *= dt[__builtin_ctz(++k)];}}} else {for (int w = 1; w < n; w *= 2) {Modular<Mod> t = 1;for (int s = 0, k = 0; s < n; s += 2 * w) {for (int i = s, j = s + w; i < s + w; ++i, ++j) {auto x = a[i], y = a[j];a[i] = x + y, a[j].v = x.v + (Mod - y.v), a[j] *= t;}t *= idt[__builtin_ctz(++k)];}}}}template <unsigned Mod>vector<Modular<Mod>> operator*(vector<Modular<Mod>> l, vector<Modular<Mod>> r) {if (l.empty() or r.empty()) return {};int n = l.size(), m = r.size(), sz = 1 << __lg(2 * (n + m - 1) - 1);if (min(n, m) < 30) {vector<long long> res(n + m- 1);for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j)res[i + j] += (l[i] * r[j]).v;return {begin(res), end(res)};}bool eq = l == r;l.resize(sz), ntt(l, false);if (eq) r = l;else r.resize(sz), ntt(r, false);for (int i = 0; i < sz; ++i) l[i] *= r[i];ntt(l, true), l.resize(n + m - 1);auto isz = 1 / Modular<Mod>(sz);for (auto&& e : l) e *= isz;return l;}constexpr long long mod = 1012924417;using Mint = Modular<mod>;vector<Mint> fact, inv_fact;void prepare_fact(int n) {fact.resize(n + 1), inv_fact.resize(n + 1);fact[0] = 1;for (int i = 1; i <= n; ++i) {fact[i] = i * fact[i - 1];}inv_fact[n] = 1 / fact[n];for (int i = n; i; --i) {inv_fact[i - 1] = i * inv_fact[i];}}Mint binom(int n, int k) {if (k < 0 or k > n) return 0;return fact[n] * inv_fact[k] * inv_fact[n - k];}int main() {cin.tie(nullptr);ios::sync_with_stdio(false);int n;cin >> n;prepare_fact(n + 2);// 2 * (1 + tan(X / 2)) / (1 - tan(X / 2))vector<Mint> b(n + 2); // B_n / n!for (int i = 0; i <= n + 1; ++i) {b[i] = inv_fact[i + 1];}b = inverse(b);vector<Mint> tanx2(n + 1);for (int i = 1; 2 * i - 1 <= n; ++i) {tanx2[2 * i - 1] = power(-1, i - 1) * 2 * (power(Mint(2), 2 * i) - 1) * b[2 * i];}auto f = vector<Mint>{2} * (vector<Mint>{1} + tanx2) * inverse(vector<Mint>{1} - tanx2);auto res = f[n] * fact[n];cout << res.v << '\n';}