結果
問題 | No.963 門松列列(2) |
ユーザー | uwi |
提出日時 | 2020-01-06 16:45:30 |
言語 | Java (openjdk 23) |
結果 |
AC
|
実行時間 | 926 ms / 3,000 ms |
コード長 | 15,730 bytes |
コンパイル時間 | 5,435 ms |
コンパイル使用メモリ | 90,024 KB |
実行使用メモリ | 73,012 KB |
最終ジャッジ日時 | 2024-11-23 00:02:59 |
合計ジャッジ時間 | 16,725 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 11 |
ソースコード
package etc;import java.io.ByteArrayInputStream;import java.io.IOException;import java.io.InputStream;import java.io.PrintWriter;import java.util.Arrays;import java.util.InputMismatchException;public class No963 {InputStream is;PrintWriter out;String INPUT = "";static int mod = 1012924417;static int G = 5;void solve(){// sec(x) + tan(x) = (1+sin(x))/(cos(x))int n = ni();if(n == 1) {out.println(1);return;}int D = 202030;long[] num = new long[D+1];int[][] fif = enumFIF(D+5, mod);for(int i = 1, s = 1;i <= D;i+=2, s = mod-s) {num[i] = (long)s * fif[1][i] % mod;}num[0]++;long[] den = new long[D+1];for(int i = 0, s = 1;i <= D;i+=2, s = mod-s) {den[i] = (long)s * fif[1][i] % mod;}long[] ret = mul(num, inv(den), D+1);for(int i = 0;i <= D;i++) {ret[i] = ret[i] * fif[0][i] % mod;}out.println(ret[n]*2%mod);}public static long[] mul(long[] a, long[] b){return Arrays.copyOf(convoluteSimply(a, b, mod, G), a.length+b.length-1);}public static long[] mul(long[] a, long[] b, int lim){return Arrays.copyOf(convoluteSimply(a, b, mod, G), lim);}public static long[] convoluteSimply(long[] a, long[] b, int P, int g){int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);long[] fa = nttmb(a, m, false, P, g);long[] fb = a == b ? fa : nttmb(b, m, false, P, g);for(int i = 0;i < m;i++){fa[i] = fa[i]*fb[i]%P;}return nttmb(fa, m, true, P, g);}// static int[] wws = new int[270000]; // outer faster// Modifed Montgomery + Barrettprivate static long[] nttmb(long[] src, int n, boolean inverse, int P, int g){long[] dst = Arrays.copyOf(src, n);int h = Integer.numberOfTrailingZeros(n);long K = Integer.highestOneBit(P)<<1;int H = Long.numberOfTrailingZeros(K)*2;long M = K*K/P;int[] wws = new int[1<<h-1];long dw = inverse ? pow(g, P-1-(P-1)/n, P) : pow(g, (P-1)/n, P);long w = (1L<<32)%P;for(int k = 0;k < 1<<h-1;k++){wws[k] = (int)w;w = modh(w*dw, M, H, P);}long J = invl(P, 1L<<32);for(int i = 0;i < h;i++){for(int j = 0;j < 1<<i;j++){for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){long u = (dst[s] - dst[t] + 2*P)*wws[k];dst[s] += dst[t];if(dst[s] >= 2*P)dst[s] -= 2*P;// long Q = (u&(1L<<32)-1)*J&(1L<<32)-1;long Q = (u<<32)*J>>>32;dst[t] = (u>>>32)-(Q*P>>>32)+P;}}if(i < h-1){for(int k = 0;k < 1<<h-i-2;k++)wws[k] = wws[k*2];}}for(int i = 0;i < n;i++){if(dst[i] >= P)dst[i] -= P;}for(int i = 0;i < n;i++){int rev = Integer.reverse(i)>>>-h;if(i < rev){long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d;}}if(inverse){long in = invl(n, P);for(int i = 0;i < n;i++)dst[i] = modh(dst[i]*in, M, H, P);}return dst;}// Modified Shoup + Barrettprivate static long[] nttsb(long[] src, int n, boolean inverse, int P, int g){long[] dst = Arrays.copyOf(src, n);int h = Integer.numberOfTrailingZeros(n);long K = Integer.highestOneBit(P)<<1;int H = Long.numberOfTrailingZeros(K)*2;long M = K*K/P;long dw = inverse ? pow(g, P-1-(P-1)/n, P) : pow(g, (P-1)/n, P);long[] wws = new long[1<<h-1];long[] ws = new long[1<<h-1];long w = 1;for(int k = 0;k < 1<<h-1;k++){wws[k] = (w<<32)/P;ws[k] = w;w = modh(w*dw, M, H, P);}for(int i = 0;i < h;i++){for(int j = 0;j < 1<<i;j++){for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){long ndsts = dst[s] + dst[t];if(ndsts >= 2*P)ndsts -= 2*P;long T = dst[s] - dst[t] + 2*P;long Q = wws[k]*T>>>32;dst[s] = ndsts;dst[t] = ws[k]*T-Q*P&(1L<<32)-1;}}// dw = dw * dw % P;if(i < h-1){for(int k = 0;k < 1<<h-i-2;k++){wws[k] = wws[k*2];ws[k] = ws[k*2];}}}for(int i = 0;i < n;i++){if(dst[i] >= P)dst[i] -= P;}for(int i = 0;i < n;i++){int rev = Integer.reverse(i)>>>-h;if(i < rev){long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d;}}if(inverse){long in = invl(n, P);for(int i = 0;i < n;i++){dst[i] = modh(dst[i] * in, M, H, P);}}return dst;}static final long mask = (1L<<31)-1;public static long modh(long a, long M, int h, int mod){long r = a-((M*(a&mask)>>>31)+M*(a>>>31)>>>h-31)*mod;return r < mod ? r : r-mod;}private static long[] garnerPrepare(int[] m){int n = m.length;assert n == m.length;if(n == 0)return new long[0];long[] gamma = new long[n];for(int k = 1;k < n;k++){long prod = 1;for(int i = 0;i < k;i++){prod = prod * m[i] % m[k];}gamma[k] = invl(prod, m[k]);}return gamma;}private static long[] garnerBatch(int[] u, int[] m, long[] gamma){int n = u.length;assert n == m.length;long[] v = new long[n];v[0] = u[0];for(int k = 1;k < n;k++){long temp = v[k-1];for(int j = k-2;j >= 0;j--){temp = (temp * m[j] + v[j]) % m[k];}v[k] = (u[k] - temp) * gamma[k] % m[k];if(v[k] < 0)v[k] += m[k];}return v;}public static long[] mulnaive(long[] a, long[] b){long[] c = new long[a.length+b.length-1];long big = 8L*mod*mod;for(int i = 0;i < a.length;i++){for(int j = 0;j < b.length;j++){c[i+j] += a[i]*b[j];if(c[i+j] >= big)c[i+j] -= big;}}for(int i = 0;i < c.length;i++)c[i] %= mod;return c;}public static long[] mulnaive(long[] a, long[] b, int lim){long[] c = new long[lim];long big = 8L*mod*mod;for(int i = 0;i < a.length;i++){for(int j = 0;j < b.length && i+j < lim;j++){c[i+j] += a[i]*b[j];if(c[i+j] >= big)c[i+j] -= big;}}for(int i = 0;i < c.length;i++)c[i] %= mod;return c;}public static long[] mul_(long[] a, long k){for(int i = 0;i < a.length;i++)a[i] = a[i] * k % mod;return a;}public static long[] mul(long[] a, long k){a = Arrays.copyOf(a, a.length);for(int i = 0;i < a.length;i++)a[i] = a[i] * k % mod;return a;}public static long[] add(long[] a, long[] b){long[] c = new long[Math.max(a.length, b.length)];for(int i = 0;i < a.length;i++)c[i] += a[i];for(int i = 0;i < b.length;i++)c[i] += b[i];for(int i = 0;i < c.length;i++)if(c[i] >= mod)c[i] -= mod;return c;}public static long[] add(long[] a, long[] b, int lim){long[] c = new long[lim];for(int i = 0;i < a.length && i < lim;i++)c[i] += a[i];for(int i = 0;i < b.length && i < lim;i++)c[i] += b[i];for(int i = 0;i < c.length;i++)if(c[i] >= mod)c[i] -= mod;return c;}public static long[] sub(long[] a, long[] b){long[] c = new long[Math.max(a.length, b.length)];for(int i = 0;i < a.length;i++)c[i] += a[i];for(int i = 0;i < b.length;i++)c[i] -= b[i];for(int i = 0;i < c.length;i++)if(c[i] < 0)c[i] += mod;return c;}public static long[] sub(long[] a, long[] b, int lim){long[] c = new long[lim];for(int i = 0;i < a.length && i < lim;i++)c[i] += a[i];for(int i = 0;i < b.length && i < lim;i++)c[i] -= b[i];for(int i = 0;i < c.length;i++)if(c[i] < 0)c[i] += mod;return c;}// F_{t+1}(x) = -F_t(x)^2*P(x) + 2F_t(x)// if want p-destructive, comment out flipping p just before returning.public static long[] inv(long[] p){int n = p.length;long[] f = {invl(p[0], mod)};for(int i = 0;i < p.length;i++){if(p[i] == 0)continue;p[i] = mod-p[i];}for(int i = 1;i < 2*n;i*=2){long[] f2 = mul(f, f, Math.min(n, 2*i));long[] f2p = mul(f2, Arrays.copyOf(p, i), Math.min(n, 2*i));for(int j = 0;j < f.length;j++){f2p[j] += 2L*f[j];if(f2p[j] >= mod)f2p[j] -= mod;if(f2p[j] >= mod)f2p[j] -= mod;}f = f2p;}for(int i = 0;i < p.length;i++){if(p[i] == 0)continue;p[i] = mod-p[i];}return f;}// differentiatepublic static long[] d(long[] p){long[] q = new long[p.length];for(int i = 0;i < p.length-1;i++){q[i] = p[i+1] * (i+1) % mod;}return q;}// integratepublic static long[] i(long[] p){long[] q = new long[p.length];for(int i = 0;i < p.length-1;i++){q[i+1] = p[i] * invl(i+1, mod) % mod;}return q;}static long[] exp(long[] a) { return exp(a, a.length); }/*** https://cs.uwaterloo.ca/~eschost/publications/BoSc09-final.pdf* @verified https://judge.yosupo.jp/problem/exp_of_formal_power_series* @param a* @param lim* @return*/static long[] exp(long[] a, int lim){long[] F = {1L};long[] G = {1L};long[] da = d(a);for(int m = 1;;m *= 2) {long[] G2 = mul(G, G, m);G = sub(mul_(G, 2), mul(F, G2, m));long[] Q = Arrays.copyOf(da, m-1);long[] W = add(Q, mul(G, sub(d(F), mul(F, Q, m), m-1)));F = mul(F, add(new long[] {1}, sub(Arrays.copyOf(a, m), i(W))), m);if(m >= lim)break;}return Arrays.copyOf(F, lim);}//// // F_{t+1}(x) = F_t(x)-(ln F_t(x) - P(x)) * F_t(x)// public static long[] exp(long[] p)// {// int n = p.length;// long[] f = {p[0]};// for(int i = 1;i < 2*n;i*=2){// long[] ii = ln(f);// long[] sub = sub(ii, p, Math.min(n, 2*i));// if(--sub[0] < 0)sub[0] += mod;// for(int j = 0;j < 2*i && j < n;j++){// sub[j] = mod-sub[j];// if(sub[j] == mod)sub[j] = 0;// }// f = mul(sub, f, Math.min(n, 2*i));//// f = sub(f, mul(sub(ii, p, 2*i), f, 2*i));// }// return f;// }// \int f'(x)/f(x) dxpublic static long[] ln(long[] f){long[] ret = i(mul(d(f), inv(f)));ret[0] = f[0];return ret;}// ln F(x) - k ln P(x) = 0public static long[] pow(long[] p, int K){int n = p.length;long[] lnp = ln(p);for(int i = 1;i < lnp.length;i++)lnp[i] = lnp[i] * K % mod;lnp[0] = pow(p[0], K, mod); // go well for some reasonreturn exp(Arrays.copyOf(lnp, n));}// destructivepublic static long[] divf(long[] a, int[][] fif){for(int i = 0;i < a.length;i++)a[i] = a[i] * fif[1][i] % mod;return a;}// destructivepublic static long[] mulf(long[] a, int[][] fif){for(int i = 0;i < a.length;i++)a[i] = a[i] * fif[0][i] % mod;return a;}public static long[] transformExponentially(long[] a, int[][] fif){return mulf(exp(divf(Arrays.copyOf(a, a.length), fif)), fif);}public static long[] transformLogarithmically(long[] a, int[][] fif){return mulf(Arrays.copyOf(ln(divf(Arrays.copyOf(a, a.length), fif)), a.length), fif);}// 1/(1-F)-1static long[] transformInvertly(long[] a){long[] b = new long[a.length];for(int i = 0;i < a.length;i++){b[i] = mod - a[i];if(b[i] == mod)b[i] = 0;}if(++b[0] == mod)b[0] = 0;long[] ret = inv(b);if(--ret[0] < 0)ret[0] += mod;return ret;}// -1/(1+F)+1static long[] transformInverseOfInvertly(long[] a){long[] b = new long[a.length];for(int i = 0;i < a.length;i++){b[i] = a[i];}if(++b[0] == mod)b[0] = 0;long[] ret = inv(b);for(int i = 0;i < a.length;i++){ret[i] = mod - ret[i];if(ret[i] == mod)ret[i] = 0;}if(++ret[0] == mod)ret[0] = 0;return ret;}public static long pow(long a, long n, long mod) {// a %= mod;long ret = 1;int x = 63 - Long.numberOfLeadingZeros(n);for (; x >= 0; x--) {ret = ret * ret % mod;if (n << 63 - x < 0)ret = ret * a % mod;}return ret;}public static long invl(long a, long mod) {long b = mod;long p = 1, q = 0;while (b > 0) {long c = a / b;long d;d = a;a = b;b = d % b;d = p;p = q;q = d - c * q;}return p < 0 ? p + mod : p;}public static long[] reverse(long[] p){long[] ret = new long[p.length];for(int i = 0;i < p.length;i++){ret[i] = p[p.length-1-i];}return ret;}public static long[] reverse(long[] p, int lim){long[] ret = new long[lim];for(int i = 0;i < lim && i < p.length;i++){ret[i] = p[p.length-1-i];}return ret;}// [quotient, remainder]// remainder can be empty.//// deg(f)=n, deg(g)=m, f=gq+r, f=gq+r.// f* = x^n*f(1/x),// t=g*^-1 mod x^(n-m+1), q=(tf* mod x^(n-m+1))*public static long[][] div(long[] f, long[] g){int n = f.length, m = g.length;if(n < m)return new long[][]{new long[0], Arrays.copyOf(f, n)};long[] rf = reverse(f, n-m+1);long[] rg = reverse(g, n-m+1);long[] rq = mul(rf, inv(rg), n-m+1);long[] q = reverse(rq, n-m+1);long[] r = sub(f, mul(q, g, m-1), m-1);return new long[][]{q, r};}public static int[][] enumFIF(int n, int mod) {int[] f = new int[n + 1];int[] invf = new int[n + 1];f[0] = 1;for (int i = 1; i <= n; i++) {f[i] = (int) ((long) f[i - 1] * i % mod);}long a = f[n];long b = mod;long p = 1, q = 0;while (b > 0) {long c = a / b;long d;d = a;a = b;b = d % b;d = p;p = q;q = d - c * q;}invf[n] = (int) (p < 0 ? p + mod : p);for (int i = n - 1; i >= 0; i--) {invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod);}return new int[][] { f, invf };}void run() throws Exception{is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());out = new PrintWriter(System.out);long s = System.currentTimeMillis();solve();out.flush();if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");// Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){// @Override// public void run() {// long s = System.currentTimeMillis();// solve();// out.flush();// if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");// }// };// t.start();// t.join();}public static void main(String[] args) throws Exception { new No963().run(); }private byte[] inbuf = new byte[1024];public int lenbuf = 0, ptrbuf = 0;private int readByte(){if(lenbuf == -1)throw new InputMismatchException();if(ptrbuf >= lenbuf){ptrbuf = 0;try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }if(lenbuf <= 0)return -1;}return inbuf[ptrbuf++];}private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }private double nd() { return Double.parseDouble(ns()); }private char nc() { return (char)skip(); }private String ns(){int b = skip();StringBuilder sb = new StringBuilder();while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')sb.appendCodePoint(b);b = readByte();}return sb.toString();}private char[] ns(int n){char[] buf = new char[n];int b = skip(), p = 0;while(p < n && !(isSpaceChar(b))){buf[p++] = (char)b;b = readByte();}return n == p ? buf : Arrays.copyOf(buf, p);}private int[] na(int n){int[] a = new int[n];for(int i = 0;i < n;i++)a[i] = ni();return a;}private long[] nal(int n){long[] a = new long[n];for(int i = 0;i < n;i++)a[i] = nl();return a;}private char[][] nm(int n, int m) {char[][] map = new char[n][];for(int i = 0;i < n;i++)map[i] = ns(m);return map;}private int[][] nmi(int n, int m) {int[][] map = new int[n][];for(int i = 0;i < n;i++)map[i] = na(m);return map;}private int ni() { return (int)nl(); }private long nl(){long num = 0;int b;boolean minus = false;while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));if(b == '-'){minus = true;b = readByte();}while(true){if(b >= '0' && b <= '9'){num = num * 10 + (b - '0');}else{return minus ? -num : num;}b = readByte();}}private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); }}