結果

問題 No.772 Dynamic Distance Sum
ユーザー ei1333333ei1333333
提出日時 2020-01-08 01:13:52
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 11,246 bytes
コンパイル時間 3,079 ms
コンパイル使用メモリ 227,416 KB
実行使用メモリ 48,128 KB
最終ジャッジ日時 2024-11-23 01:42:10
合計ジャッジ時間 10,786 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 RE -
testcase_01 RE -
testcase_02 RE -
testcase_03 AC 6 ms
8,896 KB
testcase_04 RE -
testcase_05 RE -
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
testcase_22 RE -
testcase_23 RE -
testcase_24 RE -
testcase_25 RE -
testcase_26 RE -
testcase_27 RE -
testcase_28 RE -
testcase_29 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

using namespace std;

using int64 = long long;
const int mod = 998244353;

const int64 infll = (1LL << 60) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;


template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
  os << p.first << " " << p.second;
  return os;
}

template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
  is >> p.first >> p.second;
  return is;
}

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
  for(int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
  for(T &in : v) is >> in;
  return is;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template< typename T = int64 >
vector< T > make_v(size_t a) {
  return vector< T >(a);
}

template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
  return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}

template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
  t = v;
}

template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
  for(auto &e : t) fill_v(e, v);
}

template< typename F >
struct FixPoint : F {
  FixPoint(F &&f) : F(forward< F >(f)) {}

  template< typename... Args >
  decltype(auto) operator()(Args &&... args) const {
    return F::operator()(*this, forward< Args >(args)...);
  }
};

template< typename F >
inline decltype(auto) MFP(F &&f) {
  return FixPoint< F >{forward< F >(f)};
}

template< class T >
struct ArrayPool {
  vector< T > pool;
  vector< T * > stock;
  int ptr;

  ArrayPool(int sz) : pool(sz), stock(sz) { clear(); }

  inline T *alloc() { return stock[--ptr]; }

  inline void free(T *t) { stock[ptr++] = t; }

  void clear() {
    ptr = (int) pool.size();
    for(int i = 0; i < pool.size(); i++) stock[i] = &pool[i];
  }
};

template< typename key_t >
struct SplayTree {

  const key_t e;

  SplayTree(size_t sz, const key_t &e) : e(e), pool(sz) {}

  struct Node {
    Node *l, *r, *p;
    key_t key, sum;

    Node() = default;

    Node(const key_t &k) : key(k), sum(k), l(nullptr), r(nullptr), p(nullptr) {}
  };

  ArrayPool< Node > pool;


  void rotr(Node *t) {
    auto *x = t->p, *y = x->p;
    if((x->l = t->r)) t->r->p = x;
    t->r = x, x->p = t;
    update(x), update(t);
    if((t->p = y)) {
      if(y->l == x) y->l = t;
      if(y->r == x) y->r = t;
      update(y);
    }
  }

  void rotl(Node *t) {
    auto *x = t->p, *y = x->p;
    if((x->r = t->l)) t->l->p = x;
    t->l = x, x->p = t;
    update(x), update(t);
    if((t->p = y)) {
      if(y->l == x) y->l = t;
      if(y->r == x) y->r = t;
      update(y);
    }
  }

  inline key_t sum(const Node *t) const {
    return t ? t->sum : e;
  }

  void update(Node *t) {
    t->sum = max(sum(t->l), max(t->key, sum(t->r)));
  }

  Node *get_left(Node *t) const {
    while(t->l) t = t->l;
    return t;
  }

  Node *get_right(Node *t) const {
    while(t->r) t = t->r;
    return t;
  }

  inline Node *alloc(const key_t &v) {
    return &(*pool.alloc() = Node(v));
  }

  void splay(Node *t) {
    while(t->p) {
      auto *q = t->p;
      if(!q->p) {
        if(q->l == t) rotr(t);
        else rotl(t);
      } else {
        auto *r = q->p;
        if(r->l == q) {
          if(q->l == t) rotr(q), rotr(t);
          else rotl(t), rotr(t);
        } else {
          if(q->r == t) rotl(q), rotl(t);
          else rotr(t), rotl(t);
        }
      }
    }
  }

  Node *push_back(Node *t, const key_t &v) {
    if(!t) {
      t = alloc(v);
      return t;
    } else {
      Node *cur = get_right(t), *z = alloc(v);
      splay(cur);
      z->p = cur;
      cur->r = z;
      update(cur);
      return z;
    }
  }

  Node *erase(Node *t) {
    splay(t);
    Node *x = t->l, *y = t->r;
    pool.free(t);
    if(!x) {
      t = y;
      if(t) t->p = nullptr;
    } else if(!y) {
      t = x;
      t->p = nullptr;
    } else {
      x->p = nullptr;
      t = get_right(x);
      splay(t);
      t->r = y;
      y->p = t;
      update(t);
    }
    return t;
  }
};


template< typename SUM, typename KEY >
struct LinkCutTreeSubtree {

  struct Node {
    Node *l, *r, *p;

    typename SplayTree< pair< int64_t, Node * > >::Node *light, *belong;
    KEY key;
    SUM sum;

    bool rev;
    int sz;

    bool is_root() const {
      return !p || (p->l != this && p->r != this);
    }

    Node(const KEY &key, const SUM &sum) :
        key(key), sum(sum), rev(false), sz(1), belong(nullptr),
        l(nullptr), r(nullptr), p(nullptr), light(nullptr) {}
  };

  using ST = SplayTree< pair< int64_t, Node * > >;

  ST st;
  const SUM ident;

  LinkCutTreeSubtree(int sz, const SUM &ident) : ident(ident), st(sz, make_pair(-infll, nullptr)) {}

  Node *make_node(const KEY &key) {
    auto ret = new Node(key, ident);
    update(ret);
    return ret;
  }

  Node *set_key(Node *t, const KEY &key) {
    expose(t);
    t->key = key;
    update(t);
    return t;
  }

  void toggle(Node *t) {
    swap(t->l, t->r);
    t->sum.toggle();
    t->rev ^= true;
  }

  void push(Node *t) {
    if(t->rev) {
      if(t->l) toggle(t->l);
      if(t->r) toggle(t->r);
      t->rev = false;
    }
  }


  void update(Node *t) {
    t->sz = 1;
    if(t->l) t->sz += t->l->sz;
    if(t->r) t->sz += t->r->sz;
    t->sum.merge(t->key, t->l ? t->l->sum : ident, t->r ? t->r->sum : ident);
  }

  void rotr(Node *t) {
    auto *x = t->p, *y = x->p;
    if((x->l = t->r)) t->r->p = x;
    t->r = x, x->p = t;
    update(x), update(t);
    if((t->p = y)) {
      if(y->l == x) y->l = t;
      if(y->r == x) y->r = t;
      update(y);
    }
  }

  void rotl(Node *t) {
    auto *x = t->p, *y = x->p;
    if((x->r = t->l)) t->l->p = x;
    t->l = x, x->p = t;
    update(x), update(t);
    if((t->p = y)) {
      if(y->l == x) y->l = t;
      if(y->r == x) y->r = t;
      update(y);
    }
  }


  void splay(Node *t) {
    push(t);

    Node *rot = t;
    while(!rot->is_root()) rot = rot->p;
    t->belong = rot->belong;
    if(t != rot) rot->belong = nullptr;

    while(!t->is_root()) {
      auto *q = t->p;
      if(q->is_root()) {
        push(q), push(t);
        if(q->l == t) rotr(t);
        else rotl(t);
      } else {
        auto *r = q->p;
        push(r), push(q), push(t);
        if(r->l == q) {
          if(q->l == t) rotr(q), rotr(t);
          else rotl(t), rotr(t);
        } else {
          if(q->r == t) rotl(q), rotl(t);
          else rotr(t), rotl(t);
        }
      }
    }

  }


  Node *expose(Node *t) {
    Node *rp = nullptr;
    for(auto *cur = t; cur; cur = cur->p) {
      splay(cur);
      if(cur->r) {
        cur->light = st.push_back(cur->light, {cur->r->sum.sz, cur->r});
        cur->r->belong = cur->light;
        cur->sum.add(cur->r->sum);
      }
      cur->r = rp;
      if(cur->r) {
        cur->light = st.erase(cur->r->belong);
        delete cur->r->belong;
        cur->sum.erase(cur->r->sum);
      }
      update(cur);
      rp = cur;
    }
    splay(t);
    return rp;
  }

  void link(Node *child, Node *parent) {
    expose(child);
    expose(parent);
    child->p = parent;
    parent->r = child;
    update(parent);
  }

  void cut(Node *child) {
    expose(child);
    auto *parent = child->l;
    child->l = nullptr;
    parent->p = nullptr;
    update(child);
  }

  void evert(Node *t) {
    expose(t);
    toggle(t);
    push(t);
  }

  Node *lca(Node *u, Node *v) {
    if(get_root(u) != get_root(v)) return nullptr;
    expose(u);
    return expose(v);
  }


  Node *get_kth(Node *x, int k) {
    expose(x);
    while(x) {
      push(x);
      if(x->r && x->r->sz > k) {
        x = x->r;
      } else {
        if(x->r) k -= x->r->sz;
        if(k == 0) return x;
        k -= 1;
        x = x->l;
      }
    }
    return nullptr;
  }

  Node *get_root(Node *x) {
    expose(x);
    while(x->l) {
      push(x);
      x = x->l;
    }
    return x;
  }
};


int main() {
  using Key = pair< bool, int >;

  struct Sum {
    int64 all, pdist, cdist, mdist;
    int sz, msz;

    Sum() : all(0), pdist(0), cdist(0), sz(0), mdist(0), msz(0) {}

    void toggle() {
      swap(pdist, cdist);
    }

    void merge(const Key &key, const Sum &parent, const Sum &child) {
      if(key.first) {
        all = parent.all + key.second + child.all;
        pdist = parent.pdist + (child.all + key.second) * (parent.sz + msz) + child.pdist + mdist;
        cdist = child.cdist + (parent.all + key.second) * (child.sz + msz) + parent.cdist + mdist;
        sz = parent.sz + child.sz + msz;
      } else {
        all = parent.all + child.all;
        pdist = parent.pdist + child.all * (parent.sz + msz + key.second) + child.pdist + mdist;
        cdist = child.cdist + parent.all * (child.sz + msz + key.second) + parent.cdist + mdist;
        sz = parent.sz + key.second + child.sz + msz;
      }
    }

    void add(const Sum &chsum) {
      mdist += chsum.cdist;
      msz += chsum.sz;
    }

    void erase(const Sum &chsum) {
      mdist -= chsum.cdist;
      msz -= chsum.sz;
    }

  } e;

  using LCT = LinkCutTreeSubtree< Sum, Key >;
  int N, Q;
  cin >> N >> Q;
  LCT lct(N + Q, e);
  vector< LCT::Node * > vv(N), ee(Q);

  auto search = MFP([&](auto search, LCT::Node *t, int half, int pre) -> LCT::Node * {
    lct.push(t);
    int r = t->r ? t->r->sum.sz : 0;
    if(t->r && half <= pre + r) return search(t->r, half, pre);

    if(t->light) {
      lct.st.splay(t->light);
      auto ret = t->light->sum;
      if(half <= ret.first) {
        lct.splay(ret.second);
        return search(ret.second, half, 0);
      }
    }

    int cur = (!t->key.first && t->key.second) + t->sum.msz + r + pre;
    if(half <= cur) return t;

    return search(t->l, half, cur);
  });


  int ptr = 0;
  for(int i = 0; i < N; i++) {
    vv[i] = lct.make_node(Key(false, 1));
  }
  int64 S = 0;
  unordered_map< int, int > ex[100000];

  for(int i = 0; i < Q; i++) {
    int64 T, A, B, C;
    cin >> T >> A;
    A = (A - 1 + S) % N;
    if(T == 1) {
      cin >> B >> C;
      B = (B - 1 + S) % N;
      ee[ptr] = lct.make_node(Key(true, C));
      lct.evert(vv[B]);
      lct.link(vv[B], ee[ptr]);
      lct.link(ee[ptr], vv[A]);
      ex[min(A, B)][max(A, B)] = ptr++;
    } else if(T == 2) {
      cin >> B;
      B = (B - 1 + S) % N;
      auto it = ex[min(A, B)].find(max(A, B));
      lct.cut(ee[it->second]);
      ex[min(A, B)].erase(it);
    } else {
      lct.set_key(vv[A], Key(false, 1 - vv[A]->key.second));
      if(vv[A]->sum.sz <= 1) {
        cout << 0 << "\n";
      } else {
        auto root = search(vv[A], (vv[A]->sum.sz - 1) / 2 + 1, 0);
        lct.evert(root);
        S += root->sum.cdist;
        S %= N;
        cout << root->sum.cdist << "\n";
      }
    }
  }
}
0