結果
問題 | No.963 門松列列(2) |
ユーザー | koba-e964 |
提出日時 | 2020-01-09 11:45:37 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 351 ms / 3,000 ms |
コード長 | 10,261 bytes |
コンパイル時間 | 15,385 ms |
コンパイル使用メモリ | 381,448 KB |
実行使用メモリ | 22,704 KB |
最終ジャッジ日時 | 2024-11-23 03:46:39 |
合計ジャッジ時間 | 17,971 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 347 ms
22,588 KB |
testcase_01 | AC | 351 ms
22,560 KB |
testcase_02 | AC | 350 ms
22,480 KB |
testcase_03 | AC | 348 ms
22,492 KB |
testcase_04 | AC | 350 ms
22,604 KB |
testcase_05 | AC | 347 ms
22,584 KB |
testcase_06 | AC | 348 ms
22,704 KB |
testcase_07 | AC | 350 ms
22,508 KB |
testcase_08 | AC | 345 ms
22,604 KB |
testcase_09 | AC | 345 ms
22,584 KB |
testcase_10 | AC | 349 ms
22,600 KB |
ソースコード
#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes .by_ref() .map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr, ) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ( $(read_value!($next, $t)),* ) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::<Vec<char>>() }; ($next:expr, usize1) => { read_value!($next, usize) - 1 }; ($next:expr, [ $t:tt ]) => {{ let len = read_value!($next, usize); (0..len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }}; ($next:expr, $t:ty) => { $next().parse::<$t>().expect("Parse error") }; } #[allow(unused)] macro_rules! debug { ($($format:tt)*) => (write!(std::io::stderr(), $($format)*).unwrap()); } #[allow(unused)] macro_rules! debugln { ($($format:tt)*) => (writeln!(std::io::stderr(), $($format)*).unwrap()); } /// Verified by https://atcoder.jp/contests/arc093/submissions/3968098 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 1012924417; define_mod!(P, MOD); type ModInt = mod_int::ModInt<P>; /// FFT (in-place, verified as NTT only) /// R: Ring + Copy /// Verified by: https://codeforces.com/contest/1096/submission/47672373 mod fft { use std::ops::*; /// n should be a power of 2. zeta is a primitive n-th root of unity. /// one is unity /// Note that the result should be multiplied by 1/sqrt(n). pub fn transform<R>(f: &mut [R], zeta: R, one: R) where R: Copy + Add<Output = R> + Sub<Output = R> + Mul<Output = R> { let n = f.len(); assert!(n.is_power_of_two()); { let mut i = 0; for j in 1 .. n - 1 { let mut k = n >> 1; loop { i ^= k; if k <= i { break; } k >>= 1; } if j < i { f.swap(i, j); } } } let mut zetapow = Vec::new(); { let mut m = 1; let mut cur = zeta; while m < n { zetapow.push(cur); cur = cur * cur; m *= 2; } } let mut m = 1; while m < n { let base = zetapow.pop().unwrap(); let mut r = 0; while r < n { let mut w = one; for s in r .. r + m { let u = f[s]; let d = f[s + m] * w; f[s] = u + d; f[s + m] = u - d; w = w * base; } r += 2 * m; } m *= 2; } } } // Depends on ModInt.rs fn fact_init(w: usize) -> (Vec<ModInt>, Vec<ModInt>) { let mut fac = vec![ModInt::new(1); w]; let mut invfac = vec![0.into(); w]; for i in 1 .. w { fac[i] = fac[i - 1] * i as i64; } invfac[w - 1] = fac[w - 1].inv(); for i in (0 .. w - 1).rev() { invfac[i] = invfac[i + 1] * (i as i64 + 1); } (fac, invfac) } /// Computes f^{-1} mod x^{f.len()}. /// /// Reference: https://codeforces.com/blog/entry/56422 /// /// Complexity: O(n log n) /// /// Verified by: https://yukicoder.me/submissions/415310 fn formal_power_series_inv<P: mod_int::Mod + PartialOrd>( f: &[mod_int::ModInt<P>], gen: mod_int::ModInt<P> ) -> Vec<mod_int::ModInt<P>> { let n = f.len(); assert!(n.is_power_of_two()); assert_eq!(f[0], 1.into()); let mut sz = 1; let mut r = vec![mod_int::ModInt::new(0); n]; r[0] = 1.into(); while sz < n { sz *= 2; // r_{i + 1} = 2 * r_i - r_i^2 * f let zeta = gen.pow((P::m() - 1) / sz as i64 / 2); let mut tmp_r = vec![mod_int::ModInt::new(0); 2 * sz]; let mut tmp_f = vec![mod_int::ModInt::new(0); 2 * sz]; for i in 0..sz { tmp_r[i] = r[i]; tmp_f[i] = f[i]; } fft::transform(&mut tmp_r, zeta, 1.into()); fft::transform(&mut tmp_f, zeta, 1.into()); let fac = mod_int::ModInt::new(2 * sz as i64).inv(); for i in 0..2 * sz { tmp_r[i] = tmp_r[i] * (-tmp_r[i] * tmp_f[i] + 2) * fac; } fft::transform(&mut tmp_r, zeta.inv(), 1.into()); for i in 0..sz { r[i] = tmp_r[i]; } } r } fn solve() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts { ($($format:tt)*) => (write!(out,$($format)*).unwrap()); } input!(n: usize); const W: usize = 1 << 18; let (fac, invfac) = fact_init(W); let mut sin = vec![ModInt::new(0); 2 * W]; let mut cos = vec![ModInt::new(0); W]; for i in 0..W { if i % 2 == 0 { cos[i] = invfac[i]; if i % 4 != 0 { cos[i] = -cos[i]; } } else { sin[i] = invfac[i]; if i % 4 == 3 { sin[i] = -sin[i]; } } } sin[0] += 1; // Find the expansion of (1 + sin x) / cos x let mut invcos = formal_power_series_inv(&cos, 5.into()); invcos.resize(2 * W, 0.into()); let zeta = ModInt::new(5).pow((MOD - 1) / (2 * W as i64)); fft::transform(&mut sin, zeta, 1.into()); fft::transform(&mut invcos, zeta, 1.into()); let factor = ModInt::new(2 * W as i64).inv(); for i in 0..2 * W { sin[i] *= invcos[i] * factor; } fft::transform(&mut sin, zeta.inv(), 1.into()); puts!("{}\n", sin[n] * fac[n] * 2); } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); }