結果
問題 | No.802 だいたい等差数列 |
ユーザー | risujiroh |
提出日時 | 2020-01-09 23:24:29 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 10,480 bytes |
コンパイル時間 | 2,403 ms |
コンパイル使用メモリ | 190,700 KB |
実行使用メモリ | 814,372 KB |
最終ジャッジ日時 | 2024-11-23 05:03:23 |
合計ジャッジ時間 | 20,428 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
6,816 KB |
testcase_01 | AC | 4 ms
6,816 KB |
testcase_02 | AC | 4 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 4 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 4 ms
6,820 KB |
testcase_07 | AC | 3 ms
6,816 KB |
testcase_08 | AC | 3 ms
6,816 KB |
testcase_09 | AC | 4 ms
6,816 KB |
testcase_10 | AC | 1,428 ms
277,840 KB |
testcase_11 | AC | 1,390 ms
280,540 KB |
testcase_12 | AC | 646 ms
142,088 KB |
testcase_13 | AC | 1,369 ms
280,240 KB |
testcase_14 | AC | 1,352 ms
277,712 KB |
testcase_15 | AC | 656 ms
140,536 KB |
testcase_16 | AC | 1,364 ms
277,940 KB |
testcase_17 | AC | 2 ms
6,816 KB |
testcase_18 | AC | 2 ms
6,820 KB |
testcase_19 | AC | 655 ms
143,092 KB |
testcase_20 | AC | 1,363 ms
278,608 KB |
testcase_21 | AC | 1,374 ms
280,760 KB |
testcase_22 | AC | 1,366 ms
280,824 KB |
testcase_23 | AC | 171 ms
41,272 KB |
testcase_24 | MLE | - |
testcase_25 | AC | 18 ms
6,692 KB |
testcase_26 | AC | 10 ms
6,912 KB |
testcase_27 | AC | 8 ms
6,688 KB |
testcase_28 | AC | 677 ms
142,220 KB |
testcase_29 | AC | 1,371 ms
280,836 KB |
testcase_30 | AC | 2 ms
6,692 KB |
testcase_31 | AC | 2 ms
6,692 KB |
testcase_32 | AC | 3 ms
6,688 KB |
testcase_33 | AC | 629 ms
139,700 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; template <class T> vector<T> operator-(vector<T> a) { for (auto&& e : a) e = -e; return a; } template <class T> vector<T>& operator+=(vector<T>& l, const vector<T>& r) { l.resize(max(l.size(), r.size())); for (int i = 0; i < (int)r.size(); ++i) l[i] += r[i]; return l; } template <class T> vector<T> operator+(vector<T> l, const vector<T>& r) { return l += r; } template <class T> vector<T>& operator-=(vector<T>& l, const vector<T>& r) { l.resize(max(l.size(), r.size())); for (int i = 0; i < (int)r.size(); ++i) l[i] -= r[i]; return l; } template <class T> vector<T> operator-(vector<T> l, const vector<T>& r) { return l -= r; } template <class T> vector<T>& operator<<=(vector<T>& a, size_t n) { return a.insert(begin(a), n, 0), a; } template <class T> vector<T> operator<<(vector<T> a, size_t n) { return a <<= n; } template <class T> vector<T>& operator>>=(vector<T>& a, size_t n) { return a.erase(begin(a), begin(a) + min(a.size(), n)), a; } template <class T> vector<T> operator>>(vector<T> a, size_t n) { return a >>= n; } template <class T> vector<T> operator*(const vector<T>& l, const vector<T>& r) { if (l.empty() or r.empty()) return {}; vector<T> res(l.size() + r.size() - 1); for (int i = 0; i < (int)l.size(); ++i) for (int j = 0; j < (int)r.size(); ++j) res[i + j] += l[i] * r[j]; return res; } template <class T> vector<T>& operator*=(vector<T>& l, const vector<T>& r) { return l = l * r; } template <class T> vector<T> inverse(const vector<T>& a) { assert(not a.empty() and not (a[0] == 0)); vector<T> b{1 / a[0]}; while (b.size() < a.size()) { vector<T> x(begin(a), begin(a) + min(a.size(), 2 * b.size())); x *= b * b; b.resize(2 * b.size()); for (auto i = b.size() / 2; i < min(x.size(), b.size()); ++i) b[i] = -x[i]; } return {begin(b), begin(b) + a.size()}; } template <class T> vector<T> operator/(vector<T> l, vector<T> r) { if (l.size() < r.size()) return {}; reverse(begin(l), end(l)), reverse(begin(r), end(r)); int n = l.size() - r.size() + 1; l.resize(n), r.resize(n); l *= inverse(r); return {rend(l) - n, rend(l)}; } template <class T> vector<T>& operator/=(vector<T>& l, const vector<T>& r) { return l = l / r; } template <class T> vector<T> operator%(vector<T> l, const vector<T>& r) { if (l.size() < r.size()) return l; l -= l / r * r; return {begin(l), begin(l) + (r.size() - 1)}; } template <class T> vector<T>& operator%=(vector<T>& l, const vector<T>& r) { return l = l % r; } template <class T> vector<T> derivative(const vector<T>& a) { vector<T> res(max((int)a.size() - 1, 0)); for (int i = 0; i < (int)res.size(); ++i) res[i] = (i + 1) * a[i + 1]; return res; } template <class T> vector<T> primitive(const vector<T>& a) { vector<T> res(a.size() + 1); for (int i = 1; i < (int)res.size(); ++i) res[i] = a[i - 1] / i; return res; } template <class T> vector<T> logarithm(const vector<T>& a) { assert(not a.empty() and a[0] == 1); auto res = primitive(derivative(a) * inverse(a)); return {begin(res), begin(res) + a.size()}; } template <class T> vector<T> exponent(const vector<T>& a) { assert(a.empty() or a[0] == 0); vector<T> b{1}; while (b.size() < a.size()) { vector<T> x(begin(a), begin(a) + min(a.size(), 2 * b.size())); x[0] += 1; b.resize(2 * b.size()); x -= logarithm(b); x *= {begin(b), begin(b) + b.size() / 2}; for (auto i = b.size() / 2; i < min(x.size(), b.size()); ++i) b[i] = x[i]; } return {begin(b), begin(b) + a.size()}; } namespace fft { struct C { double x, y; C(double _x = 0, double _y = 0) : x(_x), y(_y) {} }; C operator+(C l, C r) { return {l.x + r.x, l.y + r.y}; } C operator-(C l, C r) { return {l.x - r.x, l.y - r.y}; } C operator*(C l, C r) { return {l.x * r.x - l.y * r.y, l.x * r.y + l.y * r.x}; } C operator~(C a) { return {a.x, -a.y}; } vector<C> w{1}; void ensure(int n) { for (int m = w.size(); m < n; m *= 2) { C dw{cos(acos(0) / m), sin(acos(0) / m)}; w.resize(2 * m); for (int i = 0; i < m; ++i) w[m + i] = w[i] * dw; } } void fft(vector<C>& a, int n, bool inverse) { assert((n & (n - 1)) == 0); ensure(n); if (not inverse) { for (int m = n; m >>= 1; ) { for (int s = 0, k = 0; s < n; s += 2 * m, ++k) { for (int i = s, j = s + m; i < s + m; ++i, ++j) { C x = a[i], y = a[j] * w[k]; a[i] = x + y, a[j] = x - y; } } } } else { for (int m = 1; m < n; m *= 2) { for (int s = 0, k = 0; s < n; s += 2 * m, ++k) { for (int i = s, j = s + m; i < s + m; ++i, ++j) { C x = a[i], y = a[j]; a[i] = x + y, a[j] = (x - y) * ~w[k]; } } } double inv = 1.0 / n; for (auto&& e : a) e.x *= inv, e.y *= inv; } } void real_fft(vector<C>& a) { if (a.size() < 2) return; assert(a.size() % 2 == 0); int n = a.size() / 2; for (int i = 0; i < n; ++i) a[i] = {a[2 * i].x, a[2 * i + 1].x}; fft(a, n, false); for (int s = n; s >>= 1; ) for (int i = s, j = 2 * s; j-- > s; ++i) { C wa((1 + w[i].y) / 2, -w[i].x / 2), wb((1 - w[i].y) / 2, w[i].x / 2); a[2 * i] = a[i] * wa + ~a[j] * wb, a[2 * j + 1] = ~a[2 * i]; } a[1] = a[0].x - a[0].y, a[0] = a[0].x + a[0].y; } void real_ifft(vector<C>& a) { if (a.size() < 2) return; assert(a.size() % 2 == 0); int n = a.size() / 2; for (int i = 0; i < n; ++i) { C wa((1 + w[i].y) / 2, w[i].x / 2), wb((1 - w[i].y) / 2, -w[i].x / 2); a[i] = a[2 * i] * wa + a[2 * i + 1] * wb; } fft(a, n, true); for (int i = n; i--; ) a[2 * i].x = a[i].x, a[2 * i + 1].x = a[i].y; } } // namespace fft template <class T, class F = multiplies<T>> T power(T a, long long n, F op = multiplies<T>(), T e = {1}) { assert(n >= 0); T res = e; while (n) { if (n & 1) res = op(res, a); if (n >>= 1) a = op(a, a); } return res; } template <unsigned Mod> struct Modular { using M = Modular; unsigned v; Modular(long long a = 0) : v((a %= Mod) < 0 ? a + Mod : a) {} M operator-() const { return M() -= *this; } M& operator+=(M r) { if ((v += r.v) >= Mod) v -= Mod; return *this; } M& operator-=(M r) { if ((v += Mod - r.v) >= Mod) v -= Mod; return *this; } M& operator*=(M r) { v = (uint64_t)v * r.v % Mod; return *this; } M& operator/=(M r) { return *this *= power(r, Mod - 2); } friend M operator+(M l, M r) { return l += r; } friend M operator-(M l, M r) { return l -= r; } friend M operator*(M l, M r) { return l *= r; } friend M operator/(M l, M r) { return l /= r; } friend bool operator==(M l, M r) { return l.v == r.v; } }; template <unsigned Mod, size_t K = 2, int B = __lg(Mod) / K + 1> array<vector<fft::C>, K> mint_fft(const vector<Modular<Mod>>& a, int sz) { array<vector<fft::C>, K> res; for (size_t p = 0; p < K; ++p) { res[p].resize(sz); for (int i = 0; i < (int)a.size(); ++i) res[p][i] = (a[i].v >> (p * B)) & ((1 << B) - 1); fft::real_fft(res[p]); } return res; } template <unsigned Mod, size_t N, int B = __lg(Mod) / ((N + 1) / 2) + 1> vector<Modular<Mod>> mint_ifft(array<vector<fft::C>, N> a) { int n = a[0].size(); vector<Modular<Mod>> res(n); for (size_t p = 0; p < N; ++p) { fft::real_ifft(a[p]); auto base = power(Modular<Mod>(2), p * B); for (int i = 0; i < n; ++i) res[i] += round(a[p][i].x) * base; } return res; } template <class T, size_t K> array<vector<T>, 2 * K - 1> operator*( const array<vector<T>, K>& l, const array<vector<T>, K>& r) { int n = l[0].size(); array<vector<T>, 2 * K - 1> res; for (size_t p = 0; p < K; ++p) for (size_t q = 0; q < K; ++q) { res[p + q].resize(n); for (int i = 0; i < n; ++i) res[p + q][i] = res[p + q][i] + l[p][i] * r[q][i]; } return res; } template <unsigned Mod> vector<Modular<Mod>> operator*( const vector<Modular<Mod>>& l, const vector<Modular<Mod>>& r) { if (l.empty() or r.empty()) return {}; int n = l.size(), m = r.size(), sz = 1 << __lg(2 * (n + m - 1) - 1); if (min(n, m) < 30) { vector<long long> res(n + m - 1); for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) res[i + j] += (l[i] * r[j]).v; return {begin(res), end(res)}; } bool eq = l == r; auto a = mint_fft(l, sz), b = eq ? a : mint_fft(r, sz); auto res = mint_ifft<Mod>(a * b); return {begin(res), begin(res) + (n + m - 1)}; } template <unsigned Mod> vector<Modular<Mod>> inverse(const vector<Modular<Mod>>& a) { assert(not a.empty() and not (a[0] == 0)); vector<Modular<Mod>> b{1 / a[0]}; for (int m = 1; m < (int)a.size(); m *= 2) { vector<Modular<Mod>> x(begin(a), begin(a) + min<int>(a.size(), 2 * m)); auto fb = mint_fft(b, 2 * m); x = mint_ifft<Mod>(mint_fft(x, 2 * m) * fb); fill(begin(x), begin(x) + m, 0); x = mint_ifft<Mod>(mint_fft(-x, 2 * m) * fb); b.insert(end(b), begin(x) + m, end(x)); } return {begin(b), begin(b) + a.size()}; } constexpr long long mod = 1e9 + 7; using Mint = Modular<mod>; vector<Mint> fact, inv_fact, minv; void prepare(int n) { fact.resize(n + 1), inv_fact.resize(n + 1), minv.resize(n + 1); for (int i = 0; i <= n; ++i) fact[i] = i ? i * fact[i - 1] : 1; inv_fact[n] = 1 / fact[n]; for (int i = n; i; --i) inv_fact[i - 1] = i * inv_fact[i]; for (int i = 1; i <= n; ++i) minv[i] = inv_fact[i] * fact[i - 1]; } Mint binom(int n, int k) { if (k < 0 or k > n) return 0; return fact[n] * inv_fact[k] * inv_fact[n - k]; } template<> Mint& Mint::operator/=(Mint r) { return *this *= r.v < minv.size() ? minv[r.v] : power(r, mod - 2); } int main() { cin.tie(nullptr); ios::sync_with_stdio(false); int N, M, D1, D2; cin >> N >> M >> D1 >> D2; int n = N - 1; int m = M - D1 * (N - 1); int d = D2 - D1 + 1; if (m <= 0) return cout << 0 << '\n', 0; // [X^(m-1)](1-X^d)^n/(1-X)^(n+2) prepare(n + 2); vector<Mint> f(m), g(m); for (int i = 0; i <= n; ++i) { if (i * d >= m) break; f[i * d] = binom(n, i); if (i & 1) f[i * d] = -f[i * d]; } for (int i = 0; i <= n + 2; ++i) { if (i >= m) break; g[i] = binom(n + 2, i); if (i & 1) g[i] = -g[i]; } f *= inverse(g); cout << f[m - 1].v << '\n'; }