結果
| 問題 |
No.160 最短経路のうち辞書順最小
|
| コンテスト | |
| ユーザー |
not_522
|
| 提出日時 | 2020-01-12 11:54:24 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 33,215 bytes |
| コンパイル時間 | 1,959 ms |
| コンパイル使用メモリ | 140,012 KB |
| 最終ジャッジ日時 | 2025-01-08 17:12:02 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 WA * 2 |
| other | AC * 7 WA * 19 |
ソースコード
// This is free and unencumbered software released into the public domain.
// Anyone is free to copy, modify, publish, use, compile, sell, or
// distribute this software, either in source code form or as a compiled
// binary, for any purpose, commercial or non-commercial, and by any
// means.
// In jurisdictions that recognize copyright laws, the author or authors
// of this software dedicate any and all copyright interest in the
// software to the public domain. We make this dedication for the benefit
// of the public at large and to the detriment of our heirs and
// successors. We intend this dedication to be an overt act of
// relinquishment in perpetuity of all present and future rights to this
// software under copyright law.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
// OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// For more information, please refer to <http://unlicense.org>
/****************/
/* template.hpp */
/****************/
#include <algorithm>
#include <cassert>
#include <functional>
#include <iomanip>
#include <iostream>
#include <limits>
using std::cerr;
using std::cout;
using std::endl;
using std::max;
using std::min;
using std::swap;
struct BoolName : std::numpunct<char> {
std::string t, f;
BoolName(std::string t, std::string f) : t(t), f(f) {}
std::string do_truename() const { return t; }
std::string do_falsename() const { return f; }
};
void setBoolName(std::string t, std::string f) {
cout.imbue(std::locale(cout.getloc(), new BoolName(t, f)));
}
struct Initializer {
Initializer() {
cout << std::fixed << std::setprecision(15) << std::boolalpha;
setBoolName("Yes", "No");
}
} initializer;
struct Input {
bool eof;
Input() : eof(false) {}
operator char() {
char v;
while (!(this->eof = (std::scanf("%c", &v) != 1)) && std::isspace(v)) {
}
return v;
}
operator int() {
int v;
this->eof = (std::scanf("%d", &v) != 1);
return v;
}
operator long() {
long v;
this->eof = (std::scanf("%ld", &v) != 1);
return v;
}
operator long long() {
long long v;
this->eof = (std::scanf("%lld", &v) != 1);
return v;
}
operator unsigned int() {
unsigned int v;
this->eof = (std::scanf("%u", &v) != 1);
return v;
}
operator unsigned long() {
unsigned long v;
this->eof = (std::scanf("%lu", &v) != 1);
return v;
}
operator unsigned long long() {
unsigned long long v;
this->eof = (std::scanf("%llu", &v) != 1);
return v;
}
operator double() {
double v;
this->eof = (std::scanf("%lf", &v) != 1);
return v;
}
operator long double() {
long double v;
this->eof = (std::scanf("%Lf", &v) != 1);
return v;
}
void ignore() const { getchar(); }
} in;
template <typename T> T abs(T a) { return a >= 0 ? a : -a; }
template <typename T, typename S> bool chmin(T &a, const S &b) {
return a > b ? a = b, true : false;
}
template <typename T, typename S> bool chmax(T &a, const S &b) {
return a < b ? a = b, true : false;
}
template <typename T, typename S> std::function<S(T)> cast() {
return [](const T &t) { return static_cast<S>(t); };
}
template <typename T> T copy(const T &a) { return T(a); }
class ZeroPadding {
public:
ZeroPadding(int n) : n(n) {}
int n;
};
std::ostream &operator<<(std::ostream &os, const ZeroPadding &z) {
os << std::setw(z.n) << std::setfill('0');
return os;
}
template <typename T> constexpr T inf() {
return std::numeric_limits<T>::max() / 2 - 1;
}
/*************/
/* tuple.hpp */
/*************/
#include <tuple>
template <typename... T> class Tuple : public std::tuple<T...> {
public:
Tuple(Input &in) : std::tuple<T...>() { (void)in; }
};
template <typename T, typename... S>
class Tuple<T, S...> : public std::tuple<T, S...> {
public:
Tuple() : std::tuple<T, S...>() {}
Tuple(T t, S... s) : std::tuple<T, S...>(t, s...) {}
Tuple(const std::tuple<T, S...> &t) : std::tuple<T, S...>(t) {}
Tuple(Input &in) {
auto a = std::tuple<T>(in);
std::tuple<S...> b = Tuple<S...>(in);
std::tuple<T, S...> c = std::tuple_cat(a, b);
*this = c;
}
template <int n> auto &get() { return std::get<n>(*this); }
template <int n> const auto &get() const { return std::get<n>(*this); }
};
template <typename... T> Tuple<T...> makeTuple(const T &... args) {
return Tuple<T...>(args...);
}
namespace std {
template <typename... T>
class tuple_size<Tuple<T...>>
: public std::integral_constant<size_t, sizeof...(T)> {};
template <std::size_t I, typename... T> class tuple_element<I, Tuple<T...>> {
public:
using type = tuple_element_t<I, std::tuple<T...>>;
};
} // namespace std
/*****************/
/* container.hpp */
/*****************/
#include <vector>
template <typename T> class Container : public T {
private:
using S = typename T::value_type;
using Itr = typename T::iterator;
public:
Container() : T() {}
Container(int n) : T(n) {}
Container(int n, S s) : T(n, s) {}
template <typename Itr> Container(Itr first, Itr last) : T(first, last) {}
Container(const std::initializer_list<S> &v) : T(v) {}
Container(int n, Input &in) {
std::vector<S> v(n);
for (auto &i : v) {
i = in;
}
*this = Container<T>(v.begin(), v.end());
}
S max() const { return *std::max_element(this->begin(), this->end()); }
template <typename Function> auto max(Function func) const {
std::vector<std::pair<decltype(func(S())), S>> res;
for (const auto &i : *this) {
res.emplace_back(func(i), i);
}
return std::max_element(res.begin(), res.end())->second;
}
S min() const { return *std::min_element(this->begin(), this->end()); }
Tuple<S, S> minmax() const {
auto itrs = std::minmax_element(this->begin(), this->end());
return Tuple<S, S>(*itrs.first, *itrs.second);
}
template <typename Function> auto min(Function func) const {
std::vector<std::pair<decltype(func(S())), S>> res;
for (const auto &i : *this) {
res.emplace_back(func(i), i);
}
return std::min_element(res.begin(), res.end())->second;
}
int argmax() const {
return std::distance(this->begin(),
std::max_element(this->begin(), this->end()));
}
int argmin() const {
return std::distance(this->begin(),
std::min_element(this->begin(), this->end()));
}
int find(const S &a) const {
return std::distance(this->begin(),
std::find(this->begin(), this->end(), a));
}
bool contains(const S &a) const {
return std::find(this->begin(), this->end(), a) != this->end();
}
int size() const { return T::size(); }
std::pair<Itr, Itr> equal_range(const S &a) {
return std::equal_range(this->begin(), this->end(), a);
}
template <typename Function> bool all_of(Function func) const {
return std::all_of(this->begin(), this->end(), func);
}
template <typename Function> bool any_of(Function func) const {
return std::any_of(this->begin(), this->end(), func);
}
template <typename Function> bool none_of(Function func) const {
return std::none_of(this->begin(), this->end(), func);
}
int count(const S &s) const {
return std::count(this->begin(), this->end(), s);
}
bool is_sorted() const { return std::is_sorted(this->begin(), this->end()); }
void output(std::string sep = "\n", std::string end = "\n") const {
bool first = true;
for (const auto &i : *this) {
if (!first) {
cout << sep;
}
first = false;
cout << i;
}
cout << end;
}
};
/***********/
/* map.hpp */
/***********/
#include <map>
template <typename T, typename S> class Map : public Container<std::map<T, S>> {
public:
Map() : Container<std::map<T, S>>() {}
bool contains(const T &a) const { return this->count(a) != 0; }
int count(const T &t) const { return std::map<T, S>::count(t); }
};
/***************/
/* ordered.hpp */
/***************/
template <typename T> class Ordered {
public:
template <typename V> bool operator==(const V &v) const {
return !(static_cast<T>(v) < static_cast<const T &>(*this) ||
static_cast<const T &>(*this) < static_cast<T>(v));
}
template <typename V> bool operator!=(const V &v) const {
return static_cast<T>(v) < static_cast<const T &>(*this) ||
static_cast<const T &>(*this) < static_cast<T>(v);
}
template <typename V> bool operator>(const V &v) const {
return static_cast<T>(v) < static_cast<const T &>(*this);
}
template <typename V> bool operator<=(const V &v) const {
return !(static_cast<T>(v) < static_cast<const T &>(*this));
}
template <typename V> bool operator>=(const V &v) const {
return !(static_cast<const T &>(*this) < static_cast<T>(v));
}
};
/**************/
/* vector.hpp */
/**************/
#include <numeric>
template <typename T>
class Vector : public Container<std::vector<T>>, public Ordered<Vector<T>> {
public:
Vector() = default;
Vector(const Vector<T> &v) = default;
Vector(int n) : Container<std::vector<T>>(n) {}
Vector(int n, T t) : Container<std::vector<T>>(n, t) {}
template <typename Itr>
Vector(Itr first, Itr last) : Container<std::vector<T>>(first, last) {}
Vector(const std::initializer_list<T> &v) : Container<std::vector<T>>(v) {}
Vector(int n, Input &in) : Container<std::vector<T>>(n, in) {}
Vector &operator+=(const Vector &v) {
if (this->size() < v.size()) {
this->resize(v.size());
}
for (int i = 0; i < v.size(); ++i) {
(*this)[i] += v[i];
}
return *this;
}
Vector &operator+=(const T &v) {
for (auto &i : *this) {
i += v;
}
return *this;
}
Vector &operator-=(const Vector &v) {
if (this->size() < v.size()) {
this->resize(v.size());
}
for (int i = 0; i < v.size(); ++i) {
(*this)[i] -= v[i];
}
return *this;
}
Vector &operator-=(const T &v) {
for (auto &i : *this) {
i -= v;
}
return *this;
}
Vector &operator*=(const Vector &v) {
for (int i = 0; i < this->size(); ++i) {
(*this)[i] *= v[i];
}
return *this;
}
Vector &operator*=(const T &v) {
for (auto &i : *this) {
i *= v;
}
return *this;
}
Vector &operator/=(const Vector &v) {
for (int i = 0; i < this->size(); ++i) {
(*this)[i] /= v[i];
}
return *this;
}
Vector &operator/=(const T &v) {
for (auto &i : *this) {
i /= v;
}
return *this;
}
Vector &operator%=(const Vector &v) {
for (int i = 0; i < this->size(); ++i) {
(*this)[i] %= v[i];
}
return *this;
}
Vector &operator%=(const T &v) {
for (auto &i : *this) {
i %= v;
}
return *this;
}
Vector operator+(const Vector &v) const { return Vector(*this) += v; }
Vector operator+(const T &v) const { return Vector(*this) += v; }
Vector operator-(const Vector &v) const { return Vector(*this) -= v; }
Vector operator-(const T &v) const { return Vector(*this) -= v; }
Vector operator*(const Vector &v) const { return Vector(*this) *= v; }
Vector operator*(const T &v) const { return Vector(*this) *= v; }
Vector operator/(const Vector &v) const { return Vector(*this) /= v; }
Vector operator/(const T &v) const { return Vector(*this) /= v; }
Vector operator%(const Vector &v) const { return Vector(*this) %= v; }
Vector operator%(const T &v) const { return Vector(*this) %= v; }
bool operator<(const Vector &v) const {
if (this->size() != v.size()) {
return this->size() < v.size();
}
for (int i = 0; i < this->size(); ++i) {
if ((*this)[i] != v[i]) {
return (*this)[i] < v[i];
}
}
return false;
}
Vector operator-() const { return *this * -1; }
T inner_product(const Vector<T> &v) const {
return std::inner_product(this->begin(), this->end(), v.begin(), T(0));
}
Vector<T> &partial_sort(int k, bool reverse = false) {
if (!reverse) {
std::partial_sort(this->begin(), this->begin() + k, this->end());
} else {
std::partial_sort(this->begin(), this->begin() + k, this->end(),
std::greater<T>());
}
return *this;
}
Vector<T> &sort() {
std::sort(this->begin(), this->end());
return *this;
}
template <typename Function> Vector<T> &sort(Function func) {
std::sort(this->begin(), this->end(), func);
return *this;
}
Vector<T> &rsort() {
std::sort(this->rbegin(), this->rend());
return *this;
}
Vector<int> argsort() const {
Vector<Tuple<T, int>> v;
for (int i = 0; i < this->size(); ++i) {
v.emplace_back((*this)[i], i);
}
v.sort();
auto f = [](const Tuple<T, int> &t) { return t.template get<1>(); };
return v.transform(f);
}
Vector<T> &nth_element(int n, bool reverse = false) {
if (!reverse) {
std::nth_element(this->begin(), this->begin() + n, this->end());
} else {
std::nth_element(this->begin(), this->begin() + n, this->end(),
std::greater<T>());
}
return *this;
}
Vector<T> subvector(int a) const {
return Vector<T>(this->begin(), this->begin() + a);
}
Vector<T> subvector(int a, int b) const {
return Vector<T>(this->begin() + a, this->begin() + b);
}
template <typename Function> auto transform(Function func) const {
Vector<decltype(func(T()))> res;
std::transform(this->begin(), this->end(), std::back_inserter(res), func);
return res;
}
Vector<T> partial_sum() const {
Vector<T> res;
std::partial_sum(this->begin(), this->end(), std::back_inserter(res));
return res;
}
template <typename Function> Vector<T> partial_sum(Function func) const {
Vector<T> res;
std::partial_sum(this->begin(), this->end(), std::back_inserter(res), func);
return res;
}
Vector<T> &reverse() {
std::reverse(this->begin(), this->end());
return *this;
}
template <typename Function> int count_if(Function func) const {
return std::count_if(this->begin(), this->end(), func);
}
Vector<T> adjacent_difference() const {
Vector<T> res;
std::adjacent_difference(this->begin(), this->end(),
std::back_inserter(res));
return res;
}
T lower_bound(T t) const {
return std::lower_bound(this->begin(), this->end(), t) - this->begin();
}
T upper_bound(T t) const {
return std::upper_bound(this->begin(), this->end(), t) - this->begin();
}
T accumulate() const {
return std::accumulate(this->begin(), this->end(), T());
}
template <typename S, typename Function>
S accumulate(S n, Function func) const {
return std::accumulate(this->begin(), this->end(), n, func);
}
template <typename Int> static Vector<T> makeVector(Int n) {
return Vector<T>(n);
}
template <typename Int> static Vector<T> makeVector(Input &in, Int n) {
return Vector<T>(n, in);
}
template <typename Int, typename... Ints>
static auto makeVector(Input &in, Int n, Ints... ints) {
Vector<decltype(makeVector(in, ints...))> res;
for (int i = 0; i < n; ++i) {
res.emplace_back(makeVector(in, ints...));
}
return res;
}
template <typename Int, typename... Ints>
static auto makeVector(Int n, Ints... ints) {
Vector<decltype(makeVector(ints...))> res;
for (int i = 0; i < n; ++i) {
res.emplace_back(makeVector(ints...));
}
return res;
}
Vector<T> &unique() {
this->erase(std::unique(this->begin(), this->end()), this->end());
return *this;
}
bool next_permutation() {
return std::next_permutation(this->begin(), this->end());
}
Vector<T> &rotate(int n) {
std::rotate(this->begin(), this->begin() + n, this->end());
return *this;
}
Map<T, int> countAll() const {
Map<T, int> res;
for (const auto &i : *this) {
++res[i];
}
return res;
}
T matmul(const T &a) const {
return this->transform([&](const T &i) { return i.inner_product(a); });
}
};
template <typename T> Vector<T> iota(int n, T m = 0) {
Vector<T> v(n);
std::iota(v.begin(), v.end(), m);
return v;
}
template <typename T, typename S> void read(Vector<T> &t, Vector<S> &s) {
for (int i = 0; i < t.size(); ++i) {
t[i] = T(in);
s[i] = S(in);
}
}
template <typename T, typename S, typename U>
void read(Vector<T> &t, Vector<S> &s, Vector<U> &u) {
for (int i = 0; i < t.size(); ++i) {
t[i] = T(in);
s[i] = S(in);
u[i] = U(in);
}
}
template <typename T> Vector<T> operator+(const T &a, const Vector<T> &b) {
return b + a;
}
template <typename T> Vector<T> operator-(const T &a, const Vector<T> &b) {
return -b + a;
}
template <typename T> Vector<T> operator*(const T &a, const Vector<T> &b) {
return b * a;
}
/*******************/
/* graph/graph.hpp */
/*******************/
struct Edge {
using CostType = int;
const static int cost = 1;
int to;
Edge(int to = -1) : to(to) {}
Edge(Input &in) : to(in) {}
bool isNone() const { return to == -1; }
operator int() const { return to; }
};
std::ostream &operator<<(std::ostream &s, const Edge &edge) {
s << edge.to;
return s;
}
template <typename Cost> struct WeightedEdge : public Edge {
using CostType = Cost;
Cost cost;
WeightedEdge(int to = -1, Cost cost = 0) : Edge(to), cost(cost) {}
WeightedEdge(Input &in) : Edge(in), cost(in) {}
};
template <typename Cost>
std::ostream &operator<<(std::ostream &s, const WeightedEdge<Cost> &edge) {
s << edge.to << ',' << edge.cost;
return s;
}
template <typename Capacity> struct ResidualEdge : public Edge {
using CapacityType = Capacity;
Capacity cap;
int rev;
ResidualEdge(int to = -1, Capacity cap = 0) : Edge(to), cap(cap) {}
ResidualEdge(Input &in) {
Edge edge(in);
Capacity cap(in);
*this = ResidualEdge(edge, cap);
}
ResidualEdge reverse(int from) const { return ResidualEdge(from, 0); }
};
template <typename Capacity, typename Cost>
struct WeightedResidualEdge : public ResidualEdge<Capacity> {
Cost cost;
WeightedResidualEdge(int to = -1, Capacity cap = 0, Cost cost = 0)
: ResidualEdge<Capacity>(to, cap), cost(cost) {}
WeightedResidualEdge(Input &in) {
ResidualEdge<Capacity> edge(in);
Cost cost(in);
*this = WeightedResidualEdge(edge, cost);
}
WeightedResidualEdge reverse(int from) const {
return WeightedResidualEdge(from, 0, -cost);
}
};
template <typename Edge> struct FullEdge : public Edge {
int from;
FullEdge() = default;
FullEdge(const int from, const Edge &edge) : Edge(edge), from(from) {}
FullEdge(Input &in) {
int from(in);
Edge edge(in);
*this = FullEdge(from, edge);
}
};
template <typename Edge>
std::ostream &operator<<(std::ostream &s, const FullEdge<Edge> &edge) {
s << '(' << edge.from << ',' << Edge(edge) << ')';
return s;
}
template <typename Edge> class Graph {
public:
using EdgeType = Edge;
virtual int size() const = 0;
template <typename... Args> void addEdge(int from, int to, Args...) {
(void)from;
(void)to;
}
template <typename... Args>
void addUndirectedEdge(int from, int to, Args...) {
(void)from;
(void)to;
}
Vector<FullEdge<Edge>> getAllEdges() const {
Vector<FullEdge<Edge>> res;
for (int i = 0; i < size(); ++i) {
for (const auto &edge : getEdges(i)) {
res.emplace_back(i, edge);
}
}
return res;
}
virtual Vector<Edge> getEdges(int from) const = 0;
virtual Edge getEdge(int from, int to) const = 0;
virtual bool hasEdge(int from, int to) const = 0;
int getDegree(int v) const { return getEdges(v).size(); }
Vector<int> getIndegree() const {
Vector<int> degree(size());
for (const auto &edge : getAllEdges()) {
++degree[edge.to];
}
return degree;
}
};
template <typename Graph>
Graph readGraph(Input &in, int n, int m, bool undirected, bool one_origin) {
Graph graph(n);
for (int i = 0; i < m; ++i) {
FullEdge<typename Graph::EdgeType> edge(in);
if (one_origin) {
--edge.from;
--edge.to;
}
if (undirected) {
graph.addUndirectedEdge(edge);
} else {
graph.addEdge(edge);
}
}
return graph;
}
/****************************/
/* graph/adjacency_list.hpp */
/****************************/
template <typename Edge> class AdjacencyList : public Graph<Edge> {
protected:
Vector<Vector<Edge>> graph;
public:
using EdgeType = Edge;
AdjacencyList() = default;
AdjacencyList(int n) : graph(n) {}
AdjacencyList(Input &in, bool undirected = true, bool one_origin = true) {
int n(in), m(in);
*this = readGraph<AdjacencyList<Edge>>(in, n, m, undirected, one_origin);
}
AdjacencyList(Input &in, int n, int m, bool undirected = true,
bool one_origin = true) {
*this = readGraph<AdjacencyList<Edge>>(in, n, m, undirected, one_origin);
}
int size() const { return graph.size(); }
template <typename... Args> void addEdge(int from, int to, Args... args) {
graph[from].emplace_back(to, args...);
}
void addEdge(const FullEdge<Edge> &edge) {
graph[edge.from].emplace_back(edge);
}
template <typename... Args>
void addUndirectedEdge(int from, int to, Args... args) {
addEdge(from, to, args...);
addEdge(to, from, args...);
}
void addUndirectedEdge(FullEdge<Edge> edge) {
graph[edge.from].emplace_back(edge);
swap(edge.from, edge.to);
graph[edge.from].emplace_back(edge);
}
Vector<Edge> getEdges(int from) const { return graph[from]; }
Edge getEdge(int from, int to) const {
Edge res;
for (const auto &edge : graph[from]) {
if (edge.to == to) {
res = edge;
}
}
return res;
}
bool hasEdge(int from, int to) const {
for (const auto &edge : graph[from]) {
if (edge.to == to) {
return true;
}
}
return false;
}
Vector<Edge> &operator[](int v) { return graph[v]; }
const Vector<Edge> &operator[](int v) const { return graph[v]; }
};
/********************/
/* graph/search.hpp */
/********************/
template <typename Graph, typename State> class Search {
protected:
using Edge = typename Graph::EdgeType;
const Graph graph;
Vector<bool> visited;
virtual void push(const State &) = 0;
virtual State next() = 0;
virtual bool isRunning() = 0;
virtual void visit(const State &) {}
public:
Search(const Graph &graph) : graph(graph), visited(graph.size(), false) {}
void solve(const Vector<int> &from) {
for (int i : from) {
push(State(i));
}
while (isRunning()) {
State now = next();
int pos = now.getPos();
if (visited[pos]) {
continue;
}
visited[pos] = true;
visit(now);
for (const Edge &edge : graph.getEdges(pos)) {
State nextState = now.next(pos, edge);
if (visited[nextState.getPos()]) {
continue;
}
push(nextState);
}
}
}
void solve(int from) { solve(Vector<int>({from})); }
bool isReachable(int v) { return visited[v]; }
};
/******************/
/* graph/tree.hpp */
/******************/
template <typename Edge> class Tree {
public:
using EdgeType = Edge;
Vector<Edge> parent;
Vector<Vector<int>> children;
Vector<int> depth;
Tree() {}
Tree(int n) : children(n), depth(n, -1) {
for (int i = 0; i < n; ++i) {
parent.emplace_back(i);
}
}
Tree(int n, Input in) : children(n), depth(n, -1) {
for (int i = 0; i < n; ++i) {
parent.emplace_back(i);
}
for (int i = 1; i < n; ++i) {
this->addEdge(i, int(in) - 1);
}
}
int size() const { return parent.size(); }
template <typename... Args> void addEdge(int from, int to, Args... args) {
parent[from] = Edge(to, args...);
children[to].emplace_back(from);
}
void addEdge(int from, const Edge &edge) {
parent[from] = edge;
children[edge.to].emplace_back(from);
}
Vector<Edge> getEdges(int from) const {
Vector<Edge> res;
for (int v : children[from]) {
auto e = parent[v];
e.to = v;
res.emplace_back(e);
}
if (from != parent[from].to) {
res.emplace_back(parent[from]);
}
return res;
}
int getDepth(int v) {
if (depth[v] != -1) {
return depth[v];
}
if (parent[v].to == v) {
return depth[v] = 0;
}
return depth[v] = getDepth(parent[v].to) + 1;
}
Vector<int> getPath(int v) {
Vector<int> res{v};
while (v != parent[v].to) {
v = parent[v].to;
res.emplace_back(v);
}
return res;
}
};
/**********************/
/* priority_queue.hpp */
/**********************/
#include <queue>
template <typename T, bool less> class Comp {
public:
bool operator()(const T &a, const T &b) const {
return less ? a < b : !(a < b);
}
};
template <typename T, bool less = true>
class PriorityQueue
: public std::priority_queue<T, std::vector<T>, Comp<T, less>> {
private:
using Queue = std::priority_queue<T, std::vector<T>, Comp<T, less>>;
public:
PriorityQueue() : Queue() {}
PriorityQueue(const std::initializer_list<T> &s) : Queue(s) {}
T top() {
T res = Queue::top();
Queue::pop();
return res;
}
T peek() const { return Queue::top(); }
void pop() const { assert(false); }
};
/***************************/
/* graph/shortest_path.hpp */
/***************************/
template <typename Edge> struct DijkstraState {
using Cost = typename Edge::CostType;
int from;
Edge edge;
Cost cost;
DijkstraState(const int pos) : from(pos), edge(pos), cost(0) {}
DijkstraState(const int from, const Edge &edge, const Cost cost)
: from(from), edge(edge), cost(cost) {}
DijkstraState next(const int from, const Edge &edge) const {
return DijkstraState(from, edge, cost + edge.cost);
}
bool operator<(const DijkstraState &state) const { return cost > state.cost; }
int getPos() const { return edge.to; }
};
template <typename Graph, bool Restoration = false,
typename State = DijkstraState<typename Graph::EdgeType>>
class Dijkstra : public Search<Graph, State> {
protected:
using Edge = typename Graph::EdgeType;
using Cost = typename Edge::CostType;
PriorityQueue<State> que;
void push(const State &state) {
if (dis[state.getPos()] <= state.cost) {
return;
}
que.push(state);
dis[state.getPos()] = state.cost;
}
State next() {
State now = que.top();
return now;
}
bool isRunning() { return !que.empty(); }
void visit(const State &state) {
if (Restoration) {
int from = state.from, to = state.edge.to;
if (from != to) {
auto e = state.edge;
e.to = from;
shortestPathTree.addEdge(to, e);
}
}
}
public:
Vector<Cost> dis;
Tree<Edge> shortestPathTree;
Dijkstra(const Graph &graph)
: Search<Graph, State>(graph), dis(graph.size(), inf<Cost>()) {
if (Restoration) {
shortestPathTree = Tree<Edge>(graph.size());
}
}
};
template <typename Graph> Dijkstra<Graph> shortestPath(Graph &graph, int from) {
Dijkstra<Graph> dijkstra(graph);
dijkstra.solve(from);
return dijkstra;
}
template <typename Graph>
typename Graph::EdgeType::CostType shortestPath(Graph &graph, int from,
int to) {
return shortestPath(graph, from).dis[to];
}
template <typename Graph>
Dijkstra<Graph, true> shortestPathTree(Graph &graph, int from) {
Dijkstra<Graph, true> dijkstra(graph);
dijkstra.solve(from);
return dijkstra;
}
/**************/
/* string.hpp */
/**************/
#include <string>
class String : public std::string {
public:
constexpr static auto npos = std::string::npos;
String() : std::string() {}
String(char c) : std::string(1, c) {}
String(int n) : std::string(std::to_string(n)) {}
String(long n) : std::string(std::to_string(n)) {}
String(long long n) : std::string(std::to_string(n)) {}
String(const char *s) : std::string(s) {}
String(const std::string &s) : std::string(s) {}
String(int n, char c) : std::string(n, c) {}
String(Input &in) {
std::cin >> *this;
in.eof = std::cin.eof();
}
String &operator+=(const String &s) { return *this = *this + s; }
String operator+(const String &s) const { return std::operator+(*this, s); }
String &operator+=(const char *s) { return *this = *this + s; }
String operator+(const char *s) const { return std::operator+(*this, s); }
String &operator+=(char s) { return *this = *this + s; }
String operator+(char s) const { return std::operator+(*this, s); }
static String getline() {
String v;
std::getline(std::cin, v);
in.eof = std::cin.eof();
return v;
}
String substr(size_t pos, size_t n_pos = std::string::npos) {
return std::string::substr(pos, n_pos);
}
String &reverse() {
std::reverse(this->begin(), this->end());
return *this;
}
Vector<String> split(char delim = ' ') const {
std::stringstream ss(*this);
Vector<String> res;
for (std::string tmp; std::getline(ss, tmp, delim);) {
if (tmp != "") {
res.emplace_back(tmp);
}
}
return res;
}
String &toupper() {
for (auto &c : *this) {
c = std::toupper(c);
}
return *this;
}
String &tolower() {
for (auto &c : *this) {
c = std::tolower(c);
}
return *this;
}
template <typename Function> String transform(Function func) const {
String res;
std::transform(this->begin(), this->end(), std::back_inserter(res), func);
return res;
}
bool contains(const String &s) const {
return this->find(s) != std::string::npos;
}
String &erase(char c) {
String res;
for (char i : *this) {
if (i != c) {
res += i;
}
}
return *this = res;
}
int count(char c) const { return std::count(this->begin(), this->end(), c); }
template <bool Repeat = false>
String &replaceAll(const String &from, const String &to) {
for (size_t pos = 0; (pos = this->find(from, pos)) != std::string::npos;) {
this->replace(pos, from.size(), to);
if (!Repeat) {
pos += to.size();
}
}
return *this;
}
String &sort() {
std::sort(this->begin(), this->end());
return *this;
}
String &rsort() {
std::sort(this->rbegin(), this->rend());
return *this;
}
String &unique() {
std::string::erase(std::unique(this->begin(), this->end()), this->end());
return *this;
}
String &rotate(int n) {
std::rotate(this->begin(), this->begin() + n, this->end());
return *this;
}
bool next_permutation() {
return std::next_permutation(this->begin(), this->end());
}
template <typename T, typename Function1, typename Function2>
T inner_product(const String &v, T init, Function1 func1,
Function2 func2) const {
return std::inner_product(this->begin(), this->end(), v.begin(), init,
func1, func2);
}
template <typename Function> int find_if(Function func) const {
return std::find_if(this->begin(), this->end(), func) - this->begin();
}
template <typename Function> bool all_of(Function func) const {
return std::all_of(this->begin(), this->end(), func);
}
template <typename Function> bool any_of(Function func) const {
return std::any_of(this->begin(), this->end(), func);
}
template <typename Function> bool none_of(Function func) const {
return std::none_of(this->begin(), this->end(), func);
}
int size() const { return std::string::size(); }
operator int() const { return std::stoi(*this); }
operator long() const { return std::stol(*this); }
operator long long() const { return std::stoll(*this); }
operator float() const { return std::stof(*this); }
operator double() const { return std::stod(*this); }
operator long double() const { return std::stold(*this); }
};
/************/
/* main.cpp */
/************/
struct Cost : public Ordered<Cost> {
int dist, from;
constexpr Cost() : dist(0), from(-1) {}
constexpr Cost(int dist) : dist(dist), from(-1) {}
constexpr Cost(int dist, int to) : dist(dist), from(to) {}
Cost operator+(const Cost &cost) const {
return Cost(dist + cost.dist, cost.from);
}
bool operator<(const Cost &cost) const {
if (dist != cost.dist) {
return dist < cost.dist;
}
return from < cost.from;
}
};
template <> constexpr Cost inf() { return Cost(inf<int>(), inf<int>()); }
namespace std {
template <> constexpr Cost numeric_limits<Cost>::max() noexcept {
return Cost(inf<int>(), inf<int>());
}
} // namespace std
int main() {
int n(in), m(in), s(in), g(in);
AdjacencyList<WeightedEdge<Cost>> graph(in, n, m, true, false);
shortestPathTree(graph, g).shortestPathTree.getPath(s).output(" ");
}
not_522