結果

問題 No.879 Range Mod 2 Query
ユーザー jelljell
提出日時 2020-01-13 01:47:43
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 141 ms / 3,000 ms
コード長 20,945 bytes
コンパイル時間 1,692 ms
コンパイル使用メモリ 132,716 KB
実行使用メモリ 16,512 KB
最終ジャッジ日時 2024-05-08 06:35:42
合計ジャッジ時間 4,113 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 3 ms
5,376 KB
testcase_11 AC 134 ms
15,744 KB
testcase_12 AC 84 ms
15,744 KB
testcase_13 AC 102 ms
15,744 KB
testcase_14 AC 94 ms
16,256 KB
testcase_15 AC 94 ms
10,340 KB
testcase_16 AC 131 ms
16,128 KB
testcase_17 AC 136 ms
16,512 KB
testcase_18 AC 141 ms
16,256 KB
testcase_19 AC 111 ms
16,300 KB
testcase_20 AC 108 ms
16,384 KB
testcase_21 AC 114 ms
16,268 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifdef LOCAL
    #define _GLIBCXX_DEBUG
    #define __clock__
#else
    #pragma GCC optimize("Ofast")
    // #define NDEBUG
#endif
// #define __buffer_check__
#define __precision__ 10
#define iostream_untie true
#define debug_stream std::cerr

#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>

#define all(v) std::begin(v), std::end(v)
#define rall(v) std::rbegin(v), std::rend(v)
#define odd(n) ((n) & 1)
#define even(n) (not __odd(n))
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)

namespace setting
{
    using namespace std::chrono;
    system_clock::time_point start_time, end_time;
    long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }
    void print_elapsed_time() { debug_stream << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n"; }
    void buffer_check() { char bufc; if(std::cin >> bufc) debug_stream << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; }
    struct setupper
    {
        setupper()
        {
            if(iostream_untie) std::ios::sync_with_stdio(false), std::cin.tie(nullptr);
            std::cout << std::fixed << std::setprecision(__precision__);
    #ifdef stderr_path
            if(freopen(stderr_path, "a", stderr))
            {
                std::cerr << std::fixed << std::setprecision(__precision__);
            }
    #endif
    #ifdef stdout_path
            if(not freopen(stdout_path, "w", stdout))
            {
                freopen("CON", "w", stdout);
                debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdout file.\n";
            }
            std::cout << "";
    #endif
    #ifdef stdin_path
            if(not freopen(stdin_path, "r", stdin))
            {
                freopen("CON", "r", stdin);
                debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdin file.\n";
            }
    #endif
    #ifdef LOCAL
            debug_stream << "\n----- stderr at LOCAL -----\n\n";
            atexit(print_elapsed_time);
    #endif
    #ifdef __buffer_check__
            atexit(buffer_check);
    #endif
    #if defined(__clock__) || defined(LOCAL)
            start_time = system_clock::now();
    #endif
        }
    } __setupper; // struct setupper
} // namespace setting
#ifdef __clock__
class
{
    std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln;
    std::string built_func, last_func; bool is_built = false;
  public:
    void build(int crt_ln, const std::string &crt_func)
    {
        is_built = true, last_pt = built_pt = std::chrono::system_clock::now(), last_ln = built_ln = crt_ln, last_func = built_func = crt_func;
    }
    void set(int crt_ln, const std::string &crt_func)
    {
        if(is_built) last_pt = std::chrono::system_clock::now(), last_ln = crt_ln, last_func = crt_func;
        else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n";
    }
    void get(int crt_ln, const std::string &crt_func)
    {
        if(is_built)
        {
            std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now());
            long long diff = std::chrono::duration_cast<std::chrono::milliseconds>(crt_pt - last_pt).count();
            debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]";
            if(last_ln == built_ln) debug_stream << " (when built)";
            debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n";
            last_pt = built_pt, last_ln = built_ln, last_func = built_func;
        }
        else
        {
            debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n";
        }
    }
} myclock; // unnamed class
    #define build_clock() myclock.build(__LINE__, __func__)
    #define set_clock() myclock.set(__LINE__, __func__)
    #define get_clock() myclock.get(__LINE__, __func__)
#else
    #define build_clock() ((void)0)
    #define set_clock() ((void)0)
    #define get_clock() ((void)0)
#endif

namespace std
{
    // hash
    template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
    template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
    template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
    template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
    template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
    // iostream
    template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
    template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
    template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
    template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
    template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
    template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
    template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
    template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
    template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
    template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std

#ifdef LOCAL
    #define dump(...)                                                              \
        debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n",       \
            dump_func(#__VA_ARGS__, __VA_ARGS__)
    template <class T> void dump_func(const char *ptr, const T &x)
    {
        debug_stream << '\t';
        for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ') debug_stream << c;
        debug_stream << " : " << x << '\n';
    }
    template <class T, class... rest_t> void dump_func(const char *ptr, const T &x, rest_t... rest)
    {
        debug_stream << '\t';
        for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ') debug_stream << c;
        debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...);
    }
#else
    #define dump(...) ((void)0)
#endif

template <class T = int> T read() { T x; std::cin >> x; return x; }
template <class iterator> void read(iterator __first, iterator __last) { for(iterator i = __first; i != __last; ++i) std::cin >> *i; }
template <class iterator> void write(iterator __first, iterator __last) { for(iterator i = __first; i != __last; std::cout << (++i == __last ? "" : " ")) std::cout << *i; }

// substitute y for x if x > y.
template <class T> inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitute y for x if x < y.
template <class T> inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; }

// binary search on integers.
long long bin(long long __ok, long long __ng, const std::function<bool(long long)> &pred)
{
    while(std::abs(__ok - __ng) > 1)
    {
        long long mid{(__ok + __ng) / 2};
        (pred(mid) ? __ok : __ng) = mid;
    }
    return __ok;
}
// binary search on real numbers.
long double bin(long double __ok, long double __ng, const long double eps, const std::function<bool(long double)> &pred)
{
    while(std::abs(__ok - __ng) > eps)
    {
        long double mid{(__ok + __ng) / 2};
        (pred(mid) ? __ok : __ng) = mid;
    }
    return __ok;
}
// binary search on integers(with a class member function).
template <class X, class int_t>
long long bin(long long __ok, long long __ng, bool (X::*const pred)(int_t), X *const x)
{
    while(std::abs(__ok - __ng) > 1)
    {
        long long mid{(__ok + __ng) / 2};
        ((x->*pred)(mid) ? __ok : __ng) = mid;
    }
    return __ok;
}
// binary search on real numbers(with a class member function).
template <class X, class real_t>
long double bin(long double __ok, long double __ng, const long double eps, bool (X::*const pred)(real_t), X *const x)
{
    while(std::abs(__ok - __ng) > eps)
    {
        long double mid{(__ok + __ng) / 2};
        ((x->*pred)(mid) ? __ok : __ng) = mid;
    }
    return __ok;
}

// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }

// reset all bits.
template <class A> void reset(A &array) { memset(array, 0, sizeof(array)); }


/* The main code follows. */

using namespace std;
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using pii = pair<i32, i32>; using pll = pair<i64, i64>;
template <class T> using heap = priority_queue<T>;
template <class T> using rheap = priority_queue<T, vector<T>, greater<T>>;
template <class T> using hashset = unordered_set<T>;
template <class Key, class Value> using hashmap = unordered_map<Key, Value>;

// verified at https://judge.yosupo.jp/submission/2862
#ifndef LAZY_SEGMENT_TREE_HPP
#define LAZY_SEGMENT_TREE_HPP

template <class Monoid, class Action>
class lazy_segment_tree
{
    using value_type = typename Monoid::value_type;
    using operand_type = typename Action::value_type;
    Monoid *const monoid_ptr, &monoid;
    Action *const action_ptr, &action;
    const size_t orig_n, height, ext_n;
    std::vector<value_type> data;
    std::vector<operand_type> lazy;

    void recalc(size_t node) { data[node] = monoid(data[node << 1], data[node << 1 | 1]); }

    void apply(size_t index, const operand_type &operand)
    {
        action.act(data[index], operand);
        if(index < ext_n) action(lazy[index], operand);
    }

    void push(size_t index)
    {
        apply(index << 1, lazy[index]);
        apply(index << 1 | 1, lazy[index]);
        lazy[index] = action.identity();
    }

    void left_bound(size_t index, const std::function<bool(const value_type &)> &pred,
                    size_t node, size_t begin, size_t end, value_type &now, size_t &res)
    {
        if(index <= begin || end < res) return;
        if(end <= index)
        {
            const value_type nxt = monoid(data[node], now);
            if(pred(nxt))
            {
                res = begin, now = nxt;
                return;
            }
        }
        if(end - begin > 1)
        {
            push(node);
            // search from right child
            left_bound(index, pred, node << 1 | 1, (begin + end) >> 1, end, now, res);
            left_bound(index, pred, node << 1, begin, (begin + end) >> 1, now, res);
            lazy[node] = action.identity();
        }
    }

    void right_bound(size_t index, const std::function<bool(const value_type &)> &pred,
                    size_t node, size_t begin, size_t end, value_type &now, size_t &res)
    {
        if(index >= end || begin > res) return;
        if(begin >= index)
        {
            const value_type nxt = monoid(now, data[node]);
            if(pred(nxt))
            {
                res = end, now = nxt;
                return;
            }
        }
        if(end - begin > 1)
        {
            push(node);
            // search from left child
            right_bound(index, pred, node << 1, begin, (begin + end) >> 1, now, res);
            right_bound(index, pred, node << 1 | 1, (begin + end) >> 1, end, now, res);
            lazy[node] = action.identity();
        }
    }

  public:
    explicit lazy_segment_tree(size_t n) : monoid_ptr{new Monoid}, monoid{*monoid_ptr}, action_ptr{new Action}, action{*action_ptr},
                                            orig_n{n}, height(n > 1 ? 32 - __builtin_clz(n - 1) : 0), ext_n(1 << height),
                                            data(ext_n << 1, monoid.identity()), lazy(ext_n, action.identity()) {}
    lazy_segment_tree(size_t n, Monoid &_monoid) : monoid_ptr{}, monoid{_monoid}, action_ptr{new Action}, action{*action_ptr},
                                                    orig_n{n}, height(n > 1 ? 32 - __builtin_clz(n - 1) : 0), ext_n(1 << height),
                                                    data(ext_n << 1, monoid.identity()), lazy(ext_n, action.identity()) {}
    lazy_segment_tree(size_t n, Action &_actor) : monoid_ptr{new Monoid}, monoid{*monoid_ptr}, action_ptr{}, action{_actor},
                                                    orig_n{n}, height(n > 1 ? 32 - __builtin_clz(n - 1) : 0), ext_n(1 << height),
                                                    data(ext_n << 1, monoid.identity()), lazy(ext_n, action.identity()) {}
    lazy_segment_tree(size_t n, Monoid &_monoid, Action &_actor) : monoid_ptr{}, monoid{_monoid}, action_ptr{}, action{_actor},
                                                                    orig_n{n}, height(n > 1 ? 32 - __builtin_clz(n - 1) : 0), ext_n(1 << height),
                                                                    data(ext_n << 1, monoid.identity()), lazy(ext_n, action.identity()) {}
    ~lazy_segment_tree() { delete monoid_ptr; delete action_ptr; }

    // copy of the element at position i.
    value_type operator[](size_t i) { return fold(i, i + 1); }

    void build(value_type *__first, value_type *__last)
    {
        assert((size_t)std::distance(__first, __last) <= ext_n);
        std::copy(__first, __last, data.begin() + ext_n);
        for(size_t i = ext_n - 1; i; --i) recalc(i);
    }

    template <class iterator>
    void build(iterator __first, iterator __last)
    {
        static_assert(std::is_same<typename std::iterator_traits<iterator>::value_type, value_type>::value, "iterator's value_type should be equal to Monoid's");
        assert((size_t)std::distance(__first, __last) <= ext_n);
        std::copy(__first, __last, data.begin() + ext_n);
        for(size_t i = ext_n - 1; i; --i) recalc(i);
    }

    void init(const value_type &x)
    {
        for(size_t i = 0; i != ext_n; ++i) data[i | ext_n] = x;
        for(size_t i = ext_n - 1; i; --i) recalc(i);
    }

    void update(size_t index, const operand_type &operand) { update(index, index + 1, operand); }

    void update(size_t begin, size_t end, const operand_type &operand)
    {
        assert(0 <= begin && end <= orig_n);
        begin += ext_n, end += ext_n - 1;
        for(size_t i = height; i; --i) push(begin >> i), push(end >> i);
        for(size_t l = begin, r = end + 1; end; l >>= 1, r >>= 1)
        {
            if(l < r)
            {
                if(l & 1) apply(l++, operand);
                if(r & 1) apply(--r, operand);
            }
            if(begin >>= 1, end >>= 1)
            {
                recalc(begin), recalc(end);
            }
        }
    }

    value_type fold(size_t begin, size_t end)
    {
        assert(0 <= begin && end <= orig_n);
        begin += ext_n, end += ext_n - 1;
        value_type left_val{monoid.identity()}, right_val{monoid.identity()};
        for(size_t l = begin, r = end + 1; end; l >>= 1, r >>= 1)
        {
            if(l < r)
            {
                if(l & 1) left_val = monoid(left_val, data[l++]);
                if(r & 1) right_val = monoid(data[--r], right_val);
            }
            if(begin >>= 1, end >>= 1)
            {
                action.act(left_val, lazy[begin]);
                action.act(right_val, lazy[end]);
            }
        }
        return monoid(left_val, right_val);
    }

    // minimum l where range [l, index) meets the condition.
    size_t left_bound(size_t index, const std::function<bool(const value_type &)> &pred)
    {
        assert(index <= orig_n);
        size_t res = index;
        value_type now = monoid.identity();
        left_bound(index, pred, 1, 0, ext_n, now, res);
        return res;
    }

    // maximum r where range [index, r) meets the condition.
    size_t right_bound(size_t index, const std::function<bool(const value_type &)> &pred)
    {
        assert(index < orig_n);
        size_t res = index;
        value_type now = monoid.identity();
        right_bound(index, pred, 1, 0, ext_n, now, res);
        return res < orig_n ? res : orig_n;
    }
}; //class lazy_segment_tree

#endif

struct monoid
{
    struct value_type
    {
        i64 even_cnt=0;
        i64 odd_cnt=0;
        i64 even_sum=0;
        i64 odd_sum=0;
    };
    value_type identity()
    {
        return {0,0,0,0};
    }
    value_type operator()(const value_type &x, const value_type &y)
    {
        return {x.even_cnt+y.even_cnt,x.odd_cnt+y.odd_cnt,x.even_sum+y.even_sum,x.odd_sum+y.odd_sum};
    }
};

struct action
{
    struct value_type
    {
        int type=2;
        i64 val=0;
    };
    value_type identity()
    {
        return {2,0};
    }
    void operator()(value_type &x, value_type y)
    {
        if(y.type<2)
        {
            int tmp=y.type;
            if(x.val&1) tmp=!y.type;
            if(x.type<2)
            {
                x.type^=tmp;
            }
            else
            {
                x.type=tmp;
            }
            x.val=y.val;
        }
        else
        {
            x.val+=y.val;
        }
    }
    void act(monoid::value_type &x, value_type y)
    {
        if(y.type<2)
        {
            x.even_sum=x.even_cnt;
            x.odd_sum=x.odd_cnt;
            if(!y.type)
            {
                x.even_sum=0;
            }
            else
            {
                x.odd_sum=0;
                swap(x.even_cnt,x.odd_cnt);
                swap(x.even_sum,x.odd_sum);
            }
        }
        if(y.val&1)
        {
            swap(x.even_cnt,x.odd_cnt);
            swap(x.even_sum,x.odd_sum);
        }
        x.even_sum+=x.even_cnt*y.val;
        x.odd_sum+=x.odd_cnt*y.val;
    }
};


struct solver
{
    int n,Q;
    vector<int> a;
    solver() : n(read()),Q(read())
    {
        lazy_segment_tree<monoid,action> laz(n);
        {
            vector<monoid::value_type> init(n);
            for(auto &&e : init)
            {
                int a; cin>>a;
                if(a&1)
                {
                    e.odd_cnt++;
                    e.odd_sum+=a;
                }
                else
                {
                    e.even_cnt++;
                    e.even_sum+=a;
                }
            }
            laz.build(all(init));
        }
        while(Q--)
        {
            int type,l,r; cin>>type>>l>>r; --l;
            if(type==1)
            {
                laz.update(l,r,{0,0});
            }
            else if(type==2)
            {
                laz.update(l,r,{2,read()});
            }
            else
            {
                auto res=laz.fold(l,r);
                cout << res.even_sum+res.odd_sum << "\n";
            }
        }
    }
}; // struct solver


int main(int argc, char *argv[])
{
    u32 t; // loop count
#ifdef LOCAL
    t = 1;
#else
    t = 1; // single test case
#endif
    // t = -1; // infinite loop
    // cin >> t; // case number given

    while(t--)
    {
        solver();
    }
}
0