結果
| 問題 |
No.875 Range Mindex Query
|
| コンテスト | |
| ユーザー |
jell
|
| 提出日時 | 2020-01-13 13:10:16 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 64 ms / 2,000 ms |
| コード長 | 17,395 bytes |
| コンパイル時間 | 1,659 ms |
| コンパイル使用メモリ | 130,732 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-12-17 15:37:30 |
| 合計ジャッジ時間 | 2,873 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 18 |
コンパイルメッセージ
main.cpp:435:1: warning: ISO C++ forbids declaration of 'main' with no type [-Wreturn-type]
435 | main()
| ^~~~
ソースコード
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#define __clock__
#else
#pragma GCC optimize("Ofast")
// #define NDEBUG
#endif
// #define __buffer_check__
#define __precision__ 10
#define iostream_untie true
#define debug_stream std::cerr
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#define all(v) std::begin(v), std::end(v)
#define rall(v) std::rbegin(v), std::rend(v)
#define odd(n) ((n) & 1)
#define even(n) (not __odd(n))
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using pii = std::pair<i32, i32>; using pll = std::pair<i64, i64>;
template <class T> using heap = std::priority_queue<T>;
template <class T> using rheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using hashset = std::unordered_set<T>;
template <class Key, class Value> using hashmap = std::unordered_map<Key, Value>;
namespace setting
{
using namespace std::chrono;
system_clock::time_point start_time, end_time;
long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }
void print_elapsed_time() { debug_stream << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n"; }
void buffer_check()
{
char bufc;
if(std::cin >> bufc) debug_stream << "\n\033[1;35mwarning\033[0m: buffer not empty.\n";
}
struct setupper
{
setupper()
{
if(iostream_untie) std::ios::sync_with_stdio(false), std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(__precision__);
#ifdef stderr_path
if(freopen(stderr_path, "a", stderr))
{
std::cerr << std::fixed << std::setprecision(__precision__);
}
#endif
#ifdef stdout_path
if(not freopen(stdout_path, "w", stdout))
{
freopen("CON", "w", stdout);
debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdout file.\n";
}
std::cout << "";
#endif
#ifdef stdin_path
if(not freopen(stdin_path, "r", stdin))
{
freopen("CON", "r", stdin);
debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdin file.\n";
}
#endif
#ifdef LOCAL
debug_stream << "----- stderr at LOCAL -----\n\n";
atexit(print_elapsed_time);
#endif
#ifdef __buffer_check__
atexit(buffer_check);
#endif
#if defined(__clock__) || defined(LOCAL)
start_time = system_clock::now();
#endif
}
} __setupper; // struct setupper
} // namespace setting
#ifdef __clock__
class
{
std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln;
std::string built_func, last_func; bool is_built = false;
public:
void build(int crt_ln, const std::string &crt_func)
{
is_built = true, last_pt = built_pt = std::chrono::system_clock::now(), last_ln = built_ln = crt_ln, last_func = built_func = crt_func;
}
void set(int crt_ln, const std::string &crt_func)
{
if(is_built) last_pt = std::chrono::system_clock::now(), last_ln = crt_ln, last_func = crt_func;
else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n";
}
void get(int crt_ln, const std::string &crt_func)
{
if(is_built)
{
std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now());
long long diff = std::chrono::duration_cast<std::chrono::milliseconds>(crt_pt - last_pt).count();
debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]";
if(last_ln == built_ln) debug_stream << " (when built)";
debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n";
last_pt = built_pt, last_ln = built_ln, last_func = built_func;
}
else
{
debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n";
}
}
} myclock; // unnamed class
#define build_clock() myclock.build(__LINE__, __func__)
#define set_clock() myclock.set(__LINE__, __func__)
#define get_clock() myclock.get(__LINE__, __func__)
#else
#define build_clock() ((void)0)
#define set_clock() ((void)0)
#define get_clock() ((void)0)
#endif
namespace std
{
// hash
template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
// iostream
template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
template <class tuple_t> struct tupleis<tuple_t, UINT32_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std
#ifdef LOCAL
#define dump(...) \
debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", \
dump_func(#__VA_ARGS__, __VA_ARGS__)
template <class T> void dump_func(const char *ptr, const T &x)
{
debug_stream << '\t';
for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ') debug_stream << c;
debug_stream << " : " << x << '\n';
}
template <class T, class... rest_t> void dump_func(const char *ptr, const T &x, rest_t... rest)
{
debug_stream << '\t';
for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ') debug_stream << c;
debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...);
}
#else
#define dump(...) ((void)0)
#endif
template <class P> void read_range(P __first, P __second) { for(P i = __first; i != __second; ++i) std::cin >> *i; }
template <class P> void write_range(P __first, P __second) { for(P i = __first; i != __second; std::cout << (++i == __second ? '\n' : ' ')) std::cout << *i; }
// substitue y for x if x > y.
template <class T> inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitue y for x if x < y.
template <class T> inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search.
i64 bin(const std::function<bool(i64)> &pred, i64 ok, i64 ng)
{
while(std::abs(ok - ng) > 1) { i64 mid = (ok + ng) / 2; (pred(mid) ? ok : ng) = mid; }
return ok;
}
double bin(const std::function<bool(double)> &pred, double ok, double ng, const double eps)
{
while(std::abs(ok - ng) > eps) { double mid = (ok + ng) / 2; (pred(mid) ? ok : ng) = mid; }
return ok;
}
// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T *)array, (T *)(array + N), val); }
// reset all bits.
template <class A> void reset(A &array) { memset(array, 0, sizeof(array)); }
/* The main code follows. */
#ifndef SEGMENT_TREE_HPP
#define SEGMENT_TREE_HPP
template <class Monoid>
class segment_tree
{
class unique_queue
{
size_t *const que, *qbegin, *qend;
bool *const inque;
public:
unique_queue(size_t n) : que(new size_t[n]), qbegin(que), qend(que), inque(new bool[n]{}) {}
~unique_queue() { delete[] que; delete[] inque; }
void clear() { qbegin = qend = que; }
bool empty() const { return qbegin == qend; }
bool push(size_t x)
{
if(inque[x]) return false;
return inque[*qend++ = x] = true;
}
size_t pop() { return inque[*qbegin] = false, *qbegin++; }
}; // class unique_queue
using value_type = typename Monoid::value_type;
Monoid *const monoid_ptr, &monoid;
const size_t orig_n, height, ext_n;
value_type *const data;
unique_queue que;
void recalc(size_t node) { data[node] = monoid(data[node << 1], data[node << 1 | 1]); }
void rebuild()
{
while(!que.empty())
{
const size_t f = que.pop(), p = f >> 1;
if(p && que.push(p)) recalc(p);
}
que.clear();
}
void left_bound(size_t index, const std::function<bool(const value_type &)> &pred,
size_t node, size_t begin, size_t end, value_type &now, size_t &res)
{
if(index <= begin || end < res) return;
if(end <= index)
{
const value_type nxt = monoid(data[node], now);
if(pred(nxt))
{
res = begin, now = nxt;
return;
}
}
if(node < ext_n)
{
// search the right child first
left_bound(index, pred, node << 1 | 1, (begin + end) >> 1, end, now, res);
left_bound(index, pred, node << 1, begin, (begin + end) >> 1, now, res);
}
}
void right_bound(size_t index, const std::function<bool(const value_type &)> &pred,
size_t node, size_t begin, size_t end, value_type &now, size_t &res)
{
if(index >= end || begin > res) return;
if(begin >= index)
{
const value_type nxt = monoid(now, data[node]);
if(pred(nxt))
{
res = end, now = nxt;
return;
}
}
if(node < ext_n)
{
// search the left child first
right_bound(index, pred, node << 1, begin, (begin + end) >> 1, now, res);
right_bound(index, pred, node << 1 | 1, (begin + end) >> 1, end, now, res);
}
}
segment_tree(size_t n, Monoid *const _monoid_ptr, bool is_new_ptr) : monoid_ptr(is_new_ptr ? _monoid_ptr : nullptr), monoid(*_monoid_ptr),
orig_n{n}, height(n > 1 ? 32 - __builtin_clz(n - 1) : 0), ext_n{1u << height},
data(new value_type[ext_n << 1]), que(ext_n << 1)
{
std::fill_n(data, ext_n << 1, monoid.identity());
}
public:
segment_tree(size_t n) : segment_tree(n, new Monoid, true) {}
segment_tree(size_t n, Monoid *const _monoid_ptr) : segment_tree(n, _monoid_ptr, false) {}
segment_tree(size_t n, Monoid &_monoid) : segment_tree(n, &_monoid, false) {}
segment_tree(const value_type *__first, const value_type *__last) : segment_tree(std::distance(__first, __last))
{
std::fill(std::copy(__first, __last, data + ext_n), data + (ext_n << 1), monoid.identity());
for(size_t i = ext_n - 1; i; --i) recalc(i);
}
template <class iterator>
segment_tree(const iterator __first, const iterator __last) : segment_tree(std::distance(__first, __last))
{
static_assert(std::is_same<typename std::iterator_traits<iterator>::value_type, value_type>::value, "iterator's value_type should be equal to Monoid's");
std::fill(std::copy(__first, __last, data + ext_n), data + (ext_n << 1), monoid.identity());
for(size_t i = ext_n - 1; i; --i) recalc(i);
}
~segment_tree() { delete monoid_ptr; delete[] data; }
// reference to the element at position i.
value_type &operator[](size_t i)
{
assert(i < orig_n);
que.push(i |= ext_n);
return data[i];
}
void build(value_type *__first, value_type *__last)
{
assert((size_t)std::distance(__first, __last) <= orig_n);
std::copy(__first, __last, data + ext_n);
for(size_t i = ext_n - 1; i; --i) recalc(i);
que.clear();
}
template <class iterator>
void build(iterator __first, iterator __last)
{
static_assert(std::is_same<typename std::iterator_traits<iterator>::value_type, value_type>::value, "iterator's value_type should be equal to Monoid's");
assert((size_t)std::distance(__first, __last) <= orig_n);
std::copy(__first, __last, data + ext_n);
for(size_t i = ext_n - 1; i; --i) recalc(i);
que.clear();
}
value_type fold(size_t begin, size_t end)
{
assert(end <= orig_n), rebuild();
value_type leftval = monoid.identity(), rightval = monoid.identity();
begin += ext_n, end += ext_n;
while(begin < end)
{
if(begin & 1) leftval = monoid(leftval, data[begin++]);
if(end & 1) rightval = monoid(rightval, data[--end]);
begin >>= 1, end >>= 1;
}
return monoid(leftval, rightval);
}
// minimum l where range [l, index) meets the condition.
size_t left_bound(size_t index, const std::function<bool(const value_type &)> &pred)
{
assert(index <= orig_n);
size_t res = index;
value_type now = monoid.identity();
left_bound(index, pred, 1, 0, ext_n, now, res);
return res;
}
// maximum r where range [index, r) meets the condition.
size_t right_bound(size_t index, const std::function<bool(const value_type &)> &pred)
{
assert(index < orig_n);
size_t res = index;
value_type now = monoid.identity();
right_bound(index, pred, 1, 0, ext_n, now, res);
return res < orig_n ? res : orig_n;
}
}; // class segment_tree
#endif
using namespace std;
struct solver
{
solver()
{
int n,Q; cin>>n>>Q;
struct mono_t
{
vector<int> a;
using value_type = int;
mono_t(size_t n) : a(n)
{
cin>>a;
a.emplace(a.begin(),100010);
}
int identity()
{
return 0;
}
int operator()(int x, int y)
{
return a[x]<a[y]?x:y;
}
void swp(int x,int y)
{
swap(a[x],a[y]);
}
};
mono_t mono(n);
segment_tree<mono_t> seg(n+1,mono);
for(int i=1; i<=n; ++i) seg[i]=i;
while(Q--)
{
int t,l,r; cin>>t>>l>>r;
if(t>1)
{
cout << seg.fold(l,r+1) << "\n";
}
else
{
mono.swp(l,r);
seg[l]=l;
seg[r]=r;
}
}
}
};
main()
{
u32 t = 1;
#ifdef LOCAL
#endif
// t = -1; // infinite loop
// cin >> t; // case number given
while(t--) solver();
}
jell