結果

問題 No.723 2つの数の和
ユーザー Kohei AsanoKohei Asano
提出日時 2020-01-14 17:42:03
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 1,452 ms / 2,000 ms
コード長 10,749 bytes
コンパイル時間 13,502 ms
コンパイル使用メモリ 378,768 KB
実行使用メモリ 32,792 KB
最終ジャッジ日時 2024-06-07 17:00:25
合計ジャッジ時間 40,081 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 1,374 ms
32,512 KB
testcase_04 AC 1,436 ms
32,652 KB
testcase_05 AC 1,430 ms
32,572 KB
testcase_06 AC 1,402 ms
32,628 KB
testcase_07 AC 1,385 ms
32,344 KB
testcase_08 AC 1,393 ms
32,368 KB
testcase_09 AC 1,431 ms
32,792 KB
testcase_10 AC 1,427 ms
32,328 KB
testcase_11 AC 1,408 ms
32,320 KB
testcase_12 AC 1,405 ms
32,540 KB
testcase_13 AC 1,397 ms
32,684 KB
testcase_14 AC 1,452 ms
32,376 KB
testcase_15 AC 1,397 ms
32,352 KB
testcase_16 AC 1,413 ms
32,596 KB
testcase_17 AC 1,422 ms
32,588 KB
testcase_18 AC 3 ms
5,376 KB
testcase_19 AC 1,414 ms
31,196 KB
testcase_20 AC 1 ms
5,376 KB
testcase_21 AC 1 ms
5,376 KB
testcase_22 AC 1 ms
5,376 KB
testcase_23 AC 1,399 ms
32,644 KB
testcase_24 AC 1,406 ms
32,552 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused macro definition: `input`
 --> src/main.rs:1:14
  |
1 | macro_rules! input {
  |              ^^^^^
  |
  = note: `#[warn(unused_macros)]` on by default

warning: unused macro definition: `input_inner`
  --> src/main.rs:17:14
   |
17 | macro_rules! input_inner {
   |              ^^^^^^^^^^^

warning: unused macro definition: `read_value`
  --> src/main.rs:27:14
   |
27 | macro_rules! read_value {
   |              ^^^^^^^^^^

ソースコード

diff #

macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    // var... 変数の識別子, $t...型を一つよむ
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        //ここで繰り返し
        input_inner!{$iter $($r)*}
    };
}
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    //
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    // 配列の最後のNestではここで型が指定されてparseされる
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    // var... 変数の識別子, $t...型を一つよむ
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        //ここで繰り返し
        input_inner!{$iter $($r)*}
    };
}

macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    //
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };

    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };

    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    // 配列の最後のNestではここで型が指定されてparseされる
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// =========
pub trait ModI:
    Sized
    + PartialEq
    + Copy
    + std::ops::Add<Output = Self>
    + std::ops::Sub<Output = Self>
    + std::ops::Mul<Output = Self>
    + std::ops::Div<Output = Self>
    + std::ops::AddAssign
    + std::ops::SubAssign
    + std::ops::MulAssign
    + std::ops::DivAssign
    + std::default::Default
    + std::fmt::Display
    + std::fmt::Debug
{
    fn m() -> u64;
    fn new(x: u64) -> Self;
    fn pow(self, n: u64) -> Self;
    fn inv(&self) -> Self;
}
macro_rules! define_modint {
    ($n:ident,$m:expr) => {
        #[derive(Clone, Copy, Eq, PartialEq, PartialOrd, Ord)]
        struct $n(u64);

        #[allow(dead_code)]
        impl ModI for $n {
            fn m() -> u64 {
                $m
            }
            fn new(x: u64) -> $n {
                $n(x % $m)
            }

            fn pow(self, mut n: u64) -> $n {
                let mut ret = $n::new(1);
                let mut base = self;
                while n > 0 {
                    if n & 1 == 1 {
                        ret *= base;
                    }
                    base *= base;
                    n >>= 1;
                }
                ret
            }

            fn inv(&self) -> $n {
                self.pow($m - 2)
            }
        }

        impl std::default::Default for $n {
            fn default() -> $n {
                $n::new(0u64)
            }
        }

        impl std::convert::From<u64> for $n {
            fn from(x: u64) -> $n {
                $n::new(x)
            }
        }

        // Binary operator
        impl std::ops::Add for $n {
            type Output = $n;
            fn add(self, rhs: $n) -> Self::Output {
                $n::new(self.0 + rhs.0)
            }
        }

        impl std::ops::Sub for $n {
            type Output = $n;
            fn sub(self, rhs: $n) -> Self::Output {
                if self.0 >= rhs.0 {
                    $n::new(self.0 - rhs.0)
                } else {
                    $n::new($m - rhs.0 + self.0)
                }
            }
        }

        impl std::ops::Mul for $n {
            type Output = $n;
            fn mul(self, rhs: $n) -> Self::Output {
                $n::new(self.0 * rhs.0)
            }
        }

        impl std::ops::Div for $n {
            type Output = $n;
            fn div(self, rhs: $n) -> Self::Output {
                $n::new(self.0 / rhs.0)
            }
        }

        // Assign
        impl std::ops::AddAssign for $n {
            fn add_assign(&mut self, rhs: $n) {
                *self = *self + rhs;
            }
        }

        impl std::ops::SubAssign for $n {
            fn sub_assign(&mut self, rhs: $n) {
                *self = *self - rhs;
            }
        }

        impl std::ops::MulAssign for $n {
            fn mul_assign(&mut self, rhs: $n) {
                *self = *self * rhs;
            }
        }

        impl std::ops::DivAssign for $n {
            fn div_assign(&mut self, rhs: $n) {
                *self = *self / rhs;
            }
        }

        impl std::fmt::Display for $n {
            fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
                write!(f, "{}", self.0)
            }
        }
        impl std::fmt::Debug for $n {
            fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
                write!(f, "{}", self.0)
            }
        }
    };
}
// 10^8 < p < 10^9
// 3 is primitive p-1 root of these
// 167772161 = 5*2^25 + 1, 469762049 = 7*2^26 + 1, 998244353 = 119*2^23 + 1
// 1224736769 = 73 * 2^24 + 1
// define_modint!(ModInt167772161, 167772161);
define_modint!(ModInt998244353, 998244353);
define_modint!(ModInt1224736769, 1224736769);
fn ntt<T: ModI>(a: &mut [T], n: usize, inv: bool) {
    // h = log2(n)
    let h = {
        let mut i = 0;
        while 1 << i != n {
            i += 1;
        }
        i
    };
    let mut j: usize;
    for i in 0..n {
        j = 0;
        for k in 0..h {
            // (i >> k & 1)はiのk桁目のbit
            // (h - 1 - k)は全体をh-bitとしてk桁目の反対の位置
            j |= (i >> k & 1) << (h - 1 - k);
        }
        // はじめの一回だけひっくりかえす
        if i < j {
            a.swap(i, j)
        };
    }
    // バタフライ演算
    let mut b = 1;
    while b < n {
        let zeta: T = T::new(3).pow((T::m() - 1) / (2 * b as u64));
        for j in 0..b {
            // 3 is primitive root of proth prime
            // 3 ^ ((m - 1) / (n * j)) is primitive n root's j power
            let e: T = if inv {
                zeta.pow(j as u64).inv()
            } else {
                zeta.pow(j as u64)
            };
            let mut k = 0;
            while k < n {
                let s: T = a[j + k];
                let t: T = a[j + k + b] * e;
                a[j + k] = s + t;
                a[j + k + b] = s - t;
                k += b * 2;
            }
        }
        b *= 2;
    }

    if inv {
        let ni = T::new(n as u64).inv();
        for i in 0..n {
            a[i] *= ni;
        }
    }
}

fn mod_conv<T: ModI>(mut a: &mut [T], mut b: &mut [T]) -> Vec<T> {
    let n = a.len();
    // calc each mod
    ntt(&mut a, n, false);
    ntt(&mut b, n, false);
    let mut c = Vec::with_capacity(n);
    for i in 0..n {
        c.push(a[i] * b[i]);
    }
    ntt(&mut c, n, true);
    c
}

fn single_convolution<T: ModI>(a: &mut [T], b: &mut [T]) -> Vec<T> {
    let d: usize = a.len() + b.len() - 1;
    let n = d.checked_next_power_of_two().unwrap();
    let mut a = a.to_vec();
    a.resize(n, T::new(0));
    let mut b = b.to_vec();
    b.resize(n, T::new(0));
    let mut res = mod_conv(&mut a, &mut b);
    res.truncate(d);
    res
}
fn mod_pow(mut a: u64, mut n: u64, m: u64) -> u64 {
    let mut ret = 1;
    while n > 0 {
        if n & 1 == 1 {
            ret *= a;
            ret %= m;
        }
        a *= a;
        a %= m;
        n >>= 1;
    }
    ret
}
// mod mの体におけるaの逆元
fn mod_inv(a: u64, m: u64) -> u64 {
    mod_pow(a, m - 2, m)
}
fn garner(mr: &mut Vec<(u64, u64)>, m: u64) -> u64 {
    mr.push((m, 0));
    // coef... mixed radixの係数, constants... 前まで求めた係数
    let mut coef: Vec<u64> = vec![1; mr.len()];
    let mut constants: Vec<u64> = vec![0; mr.len()];
    for i in 0..mr.len() - 1 {
        let v: u64 = (mr[i].1 + mr[i].0 - constants[i]) * mod_inv(coef[i], mr[i].0) % mr[i].0;
        for j in i + 1..mr.len() {
            constants[j] += coef[j] * v;
            constants[j] %= mr[j].0;
            coef[j] *= mr[i].0;
            coef[j] %= mr[j].0;
        }
    }
    constants[mr.len() - 1]
}

// for more bigger number
fn convolution(a: &[u64], b: &[u64]) -> Vec<u64> {
    let d: usize = a.len() + b.len() - 1;
    let n = d.checked_next_power_of_two().unwrap();
    let mut a = a.to_vec();
    a.resize(n, 0);
    let mut b = b.to_vec();
    b.resize(n, 0);
    type F0 = ModInt1224736769;
    type F1 = ModInt998244353;
    let mut a0: Vec<F0> = a.iter().map(|e| F0::new(*e)).collect();
    let mut b0: Vec<F0> = b.iter().map(|e| F0::new(*e)).collect();
    let res0 = single_convolution(&mut a0, &mut b0);
    let mut a1: Vec<F1> = a.iter().map(|e| F1::new(*e)).collect();
    let mut b1: Vec<F1> = b.iter().map(|e| F1::new(*e)).collect();
    let res1 = single_convolution(&mut a1, &mut b1);
    let mut res: Vec<u64> = vec![];
    for i in 0..res0.len() {
        let mut mr = vec![(1224736769u64, res0[i].0), (998244353u64, res1[i].0)];
        let v = garner(&mut mr, std::u64::MAX);
        res.push(v);
    }
    res
}

fn main() {
    input! {
        n:usize,
        x:usize,
        a: [usize;n]
    }
    let mut a = a;
    a.sort();
    let size = a[n - 1] + 1;
    let mut a0 = vec![0; size];
    let mut b0 = vec![0; size];
    for e in a {
        a0[e] += 1;
        b0[e] += 1;
    }
    let res = convolution(&a0, &b0);
    if x < size * 2 - 1 {
        println!("{:?}", res[x]);
    } else {
        println!("{:?}", 0);
    }
}
0