結果
| 問題 |
No.945 YKC饅頭
|
| コンテスト | |
| ユーザー |
jell
|
| 提出日時 | 2020-01-17 13:46:30 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 399 ms / 2,000 ms |
| コード長 | 16,113 bytes |
| コンパイル時間 | 2,212 ms |
| コンパイル使用メモリ | 134,300 KB |
| 実行使用メモリ | 11,904 KB |
| 最終ジャッジ日時 | 2024-06-25 15:49:16 |
| 合計ジャッジ時間 | 12,333 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 74 |
コンパイルメッセージ
main.cpp:422:1: warning: ISO C++ forbids declaration of 'main' with no type [-Wreturn-type]
422 | main()
| ^~~~
ソースコード
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#define __clock__
#else
#pragma GCC optimize("Ofast")
// #define NDEBUG
#endif
// #define __buffer_check__
#define __precision__ 10
#define iostream_untie true
#define debug_stream std::cerr
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#define all(v) std::begin(v), std::end(v)
#define rall(v) std::rbegin(v), std::rend(v)
#define odd(n) ((n) & 1)
#define even(n) (not __odd(n))
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using pii = std::pair<i32, i32>; using pll = std::pair<i64, i64>;
template <class T> using heap = std::priority_queue<T>;
template <class T> using rheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using hashset = std::unordered_set<T>;
template <class Key, class Value> using hashmap = std::unordered_map<Key, Value>;
namespace setting
{
using namespace std::chrono;
system_clock::time_point start_time, end_time;
long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }
void print_elapsed_time() { debug_stream << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n"; }
void buffer_check()
{
char bufc;
if(std::cin >> bufc) debug_stream << "\n\033[1;35mwarning\033[0m: buffer not empty.\n";
}
struct setupper
{
setupper()
{
if(iostream_untie) std::ios::sync_with_stdio(false), std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(__precision__);
#ifdef stderr_path
if(freopen(stderr_path, "a", stderr))
{
std::cerr << std::fixed << std::setprecision(__precision__);
}
#endif
#ifdef stdout_path
if(not freopen(stdout_path, "w", stdout))
{
freopen("CON", "w", stdout);
debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdout file.\n";
}
std::cout << "";
#endif
#ifdef stdin_path
if(not freopen(stdin_path, "r", stdin))
{
freopen("CON", "r", stdin);
debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdin file.\n";
}
#endif
#ifdef LOCAL
debug_stream << "----- stderr at LOCAL -----\n\n";
atexit(print_elapsed_time);
#endif
#ifdef __buffer_check__
atexit(buffer_check);
#endif
#if defined(__clock__) || defined(LOCAL)
start_time = system_clock::now();
#endif
}
} __setupper; // struct setupper
} // namespace setting
#ifdef __clock__
class
{
std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln;
std::string built_func, last_func; bool is_built = false;
public:
void build(int crt_ln, const std::string &crt_func)
{
is_built = true, last_pt = built_pt = std::chrono::system_clock::now(), last_ln = built_ln = crt_ln, last_func = built_func = crt_func;
}
void set(int crt_ln, const std::string &crt_func)
{
if(is_built) last_pt = std::chrono::system_clock::now(), last_ln = crt_ln, last_func = crt_func;
else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n";
}
void get(int crt_ln, const std::string &crt_func)
{
if(is_built)
{
std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now());
long long diff = std::chrono::duration_cast<std::chrono::milliseconds>(crt_pt - last_pt).count();
debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]";
if(last_ln == built_ln) debug_stream << " (when built)";
debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n";
last_pt = built_pt, last_ln = built_ln, last_func = built_func;
}
else
{
debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n";
}
}
} myclock; // unnamed class
#define build_clock() myclock.build(__LINE__, __func__)
#define set_clock() myclock.set(__LINE__, __func__)
#define get_clock() myclock.get(__LINE__, __func__)
#else
#define build_clock() ((void)0)
#define set_clock() ((void)0)
#define get_clock() ((void)0)
#endif
namespace std
{
// hash
template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
// iostream
template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std
#ifdef LOCAL
#define dump(...) \
debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", \
dump_func(#__VA_ARGS__, __VA_ARGS__)
template <class T> void dump_func(const char *ptr, const T &x)
{
debug_stream << '\t';
for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ') debug_stream << c;
debug_stream << " : " << x << '\n';
}
template <class T, class... rest_t> void dump_func(const char *ptr, const T &x, rest_t... rest)
{
debug_stream << '\t';
for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ') debug_stream << c;
debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...);
}
#else
#define dump(...) ((void)0)
#endif
template <class P> void read_range(P __first, P __second) { for(P i = __first; i != __second; ++i) std::cin >> *i; }
template <class P> void write_range(P __first, P __second) { for(P i = __first; i != __second; std::cout << (++i == __second ? '\n' : ' ')) std::cout << *i; }
// substitue y for x if x > y.
template <class T> inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitue y for x if x < y.
template <class T> inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search.
i64 bin(const std::function<bool(i64)> &pred, i64 ok, i64 ng)
{
while(std::abs(ok - ng) > 1) { i64 mid = (ok + ng) / 2; (pred(mid) ? ok : ng) = mid; }
return ok;
}
double bin(const std::function<bool(double)> &pred, double ok, double ng, const double eps)
{
while(std::abs(ok - ng) > eps) { double mid = (ok + ng) / 2; (pred(mid) ? ok : ng) = mid; }
return ok;
}
// be careful that val is type-sensitive.
template <class T, class A, size_t ext_n> void init(A (&array)[ext_n], const T &val) { std::fill((T *)array, (T *)(array + ext_n), val); }
// reset all bits.
template <class A> void reset(A &array) { memset(array, 0, sizeof(array)); }
/* The main code follows. */
// Monoid must have the members "value_type", "identity", "operator()".
template <class Monoid, class Actor>
class Lazy_segment_tree
{
using value_type = typename Monoid::value_type;
using actor_value_type = typename Actor::value_type;
Monoid monoid; Actor actor;
const size_t orig_n, ext_n;
std::vector<value_type> data;
std::vector<actor_value_type> lazy;
bool *const flag;
void eval(size_t k, size_t l, size_t r)
{
if(!flag[k]) return;
actor.act(data[k], lazy[k]);
if(r - l > 1)
{
actor(lazy[k * 2], lazy[k]);
actor(lazy[k * 2 + 1], lazy[k]);
flag[k * 2] = flag[k * 2 + 1] = true;
}
lazy[k] = actor.identity(), flag[k] = false;
}
void update(size_t a, size_t b, const actor_value_type &x, size_t k, size_t l, size_t r)
{
eval(k, l, r);
if(b <= l || r <= a) return;
if(a <= l && r <= b)
{
actor(lazy[k], x);
flag[k] = true;
eval(k, l, r);
}
else
{
update(a, b, x, k * 2, l, (l + r) >> 1);
update(a, b, x, k * 2 + 1, (l + r) >> 1, r);
data[k] = monoid(data[k * 2], data[k * 2 + 1]);
}
}
value_type fold(size_t a, size_t b, size_t k, size_t l, size_t r)
{
if(b <= l || r <= a) return monoid.identity();
eval(k, l, r);
if(a <= l && r <= b) return data[k];
return monoid(fold(a, b, k * 2, l, (l + r) >> 1), fold(a, b, k * 2 + 1, (l + r) >> 1, r));
}
void left_bound(size_t idx, const std::function<bool(const value_type &)> &pred,
size_t k, size_t l, size_t r, value_type &now, size_t &res)
{
if(idx <= l || r < res) return;
eval(k, l, r);
if(r <= idx)
{
value_type nxt = monoid(data[k], now);
if(pred(nxt))
{
res = l, now = nxt;
return;
}
}
if(r - l > 1)
{
left_bound(idx, pred, k << 1 ^ 1, l + r >> 1, r, now, res);
left_bound(idx, pred, k << 1, l, l + r >> 1, now, res);
}
}
void right_bound(size_t idx, const std::function<bool(const value_type &)> &pred,
size_t k, size_t l, size_t r, value_type &now, size_t &res)
{
if(idx >= r || l > res) return;
eval(k, l, r);
if(l >= idx)
{
value_type nxt = monoid(now, data[k]);
if(pred(nxt))
{
res = r, now = nxt;
return;
}
}
if(r - l > 1)
{
right_bound(idx, pred, k << 1, l, l + r >> 1, now, res);
right_bound(idx, pred, k << 1 ^ 1, l + r >> 1, r, now, res);
}
}
public:
Lazy_segment_tree(size_t n, Monoid _monoid = Monoid(), Actor _actor = Actor())
: monoid{_monoid}, actor(_actor), orig_n{n}, ext_n(n > 1 ? 1 << (32 - __builtin_clz(n - 1)) : 1),
data(ext_n << 1, monoid.identity()), lazy(ext_n << 1, actor.identity()), flag(new bool[ext_n << 1])
{}
~Lazy_segment_tree() { delete[] flag; }
value_type operator[](size_t i) { return fold(i, i + 1); }
void build(value_type *__first, value_type *__last)
{
std::copy(__first, __last, &data[ext_n]);
for(size_t i = ext_n; i; --i) data[i] = monoid(data[i * 2], data[i * 2 + 1]);
}
template <class iterator>
void build(iterator __first, iterator __last)
{
static_assert(std::is_same<typename std::iterator_traits<iterator>::value_type, value_type>::value, "iterator's value_type should be equal to Monoid's");
std::copy(__first, __last, &data[ext_n]);
for(size_t i = ext_n - 1; i; --i) data[i] = monoid(data[i * 2], data[i * 2 + 1]);
}
void init(const value_type &x)
{
for(size_t i = 0; i < ext_n; ++i) data[i + ext_n] = x;
for(size_t i = ext_n - 1; i; --i) data[i] = monoid(data[i * 2], data[i * 2 + 1]);
}
void update(size_t a, const actor_value_type &x) { update(a, a + 1, x); }
void update(size_t a, size_t b, const actor_value_type &x) { update(a, b, x, 1, 0, ext_n); }
value_type fold(size_t a, size_t b) { return fold(a, b, 1, 0, ext_n); }
size_t left_bound(size_t i, const std::function<bool(const value_type &)> &pred)
{
assert(i <= orig_n);
size_t res = i;
value_type now = monoid.identity();
left_bound(i, pred, 1, 0, ext_n, now, res);
return res;
}
size_t right_bound(size_t i, const std::function<bool(const value_type &)> &pred)
{
assert(i < orig_n);
size_t res = i;
value_type now = monoid.identity();
right_bound(i, pred, 1, 0, ext_n, now, res);
return res < orig_n ? res : orig_n;
}
}; //class Lazy_segment_tree
using namespace std;
struct info
{
int id; char co;
};
struct monoid
{
using value_type = info;
value_type identity()
{
return {(int)1e6,0};
}
value_type operator()(const value_type &x, const value_type &y)
{
if(x.id>y.id) return y;
return x;
}
};
struct actor
{
using value_type = info;
value_type identity()
{
return {(int)1e6,0};
}
void operator()(value_type &x, const value_type &y)
{
if(x.id>y.id) x=y;
}
template <class other>
void act(other &x, const value_type &y)
{
if(x.id>y.id) x=y;
}
};
struct solver
{
const string sig="YKC";
solver()
{
int n,m; cin>>n>>m;
Lazy_segment_tree<monoid,actor> laz(n);
for(int i=0; i<m; ++i)
{
int l,r; char t; cin>>l>>r>>t;
--l;
laz.update(l,r,{i,t});
}
int cnt[3]={};
for(int i=0; i<n; ++i)
{
cnt[sig.find(laz[i].co)]++;
}
cout << cnt[0] << " " << cnt[1] << " " << cnt[2] << "\n";
}
};
main()
{
u32 t = 1;
#ifdef LOCAL
t=2;
#endif
// t = -1; // infinite loop
// cin >> t; // case number given
while(t--) solver();
}
jell