結果

問題 No.945 YKC饅頭
ユーザー jelljell
提出日時 2020-01-17 13:48:08
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 187 ms / 2,000 ms
コード長 20,064 bytes
コンパイル時間 1,450 ms
コンパイル使用メモリ 127,380 KB
実行使用メモリ 9,528 KB
最終ジャッジ日時 2023-09-07 22:12:38
合計ジャッジ時間 7,717 ms
ジャッジサーバーID
(参考情報)
judge11 / judge14
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
4,380 KB
testcase_01 AC 2 ms
4,380 KB
testcase_02 AC 2 ms
4,380 KB
testcase_03 AC 2 ms
4,380 KB
testcase_04 AC 2 ms
4,376 KB
testcase_05 AC 2 ms
4,380 KB
testcase_06 AC 2 ms
4,376 KB
testcase_07 AC 2 ms
4,380 KB
testcase_08 AC 1 ms
4,376 KB
testcase_09 AC 2 ms
4,376 KB
testcase_10 AC 2 ms
4,380 KB
testcase_11 AC 1 ms
4,376 KB
testcase_12 AC 1 ms
4,380 KB
testcase_13 AC 2 ms
4,380 KB
testcase_14 AC 2 ms
4,376 KB
testcase_15 AC 1 ms
4,380 KB
testcase_16 AC 2 ms
4,384 KB
testcase_17 AC 2 ms
4,380 KB
testcase_18 AC 2 ms
4,380 KB
testcase_19 AC 2 ms
4,380 KB
testcase_20 AC 2 ms
4,376 KB
testcase_21 AC 2 ms
4,380 KB
testcase_22 AC 2 ms
4,380 KB
testcase_23 AC 2 ms
4,380 KB
testcase_24 AC 2 ms
4,380 KB
testcase_25 AC 2 ms
4,380 KB
testcase_26 AC 3 ms
4,376 KB
testcase_27 AC 2 ms
4,380 KB
testcase_28 AC 2 ms
4,380 KB
testcase_29 AC 2 ms
4,384 KB
testcase_30 AC 2 ms
4,380 KB
testcase_31 AC 10 ms
4,716 KB
testcase_32 AC 11 ms
6,232 KB
testcase_33 AC 43 ms
9,364 KB
testcase_34 AC 85 ms
6,132 KB
testcase_35 AC 147 ms
9,240 KB
testcase_36 AC 100 ms
4,376 KB
testcase_37 AC 95 ms
4,380 KB
testcase_38 AC 92 ms
4,724 KB
testcase_39 AC 26 ms
6,184 KB
testcase_40 AC 29 ms
9,236 KB
testcase_41 AC 14 ms
6,384 KB
testcase_42 AC 134 ms
6,132 KB
testcase_43 AC 82 ms
4,376 KB
testcase_44 AC 116 ms
9,232 KB
testcase_45 AC 138 ms
6,176 KB
testcase_46 AC 8 ms
6,172 KB
testcase_47 AC 88 ms
6,188 KB
testcase_48 AC 19 ms
4,376 KB
testcase_49 AC 41 ms
6,144 KB
testcase_50 AC 152 ms
6,136 KB
testcase_51 AC 185 ms
9,272 KB
testcase_52 AC 181 ms
9,364 KB
testcase_53 AC 182 ms
9,288 KB
testcase_54 AC 182 ms
9,336 KB
testcase_55 AC 187 ms
9,340 KB
testcase_56 AC 16 ms
9,236 KB
testcase_57 AC 18 ms
9,364 KB
testcase_58 AC 98 ms
9,296 KB
testcase_59 AC 115 ms
9,336 KB
testcase_60 AC 51 ms
9,404 KB
testcase_61 AC 103 ms
9,336 KB
testcase_62 AC 98 ms
9,240 KB
testcase_63 AC 18 ms
9,348 KB
testcase_64 AC 55 ms
9,528 KB
testcase_65 AC 46 ms
9,280 KB
testcase_66 AC 45 ms
9,368 KB
testcase_67 AC 77 ms
9,408 KB
testcase_68 AC 54 ms
9,276 KB
testcase_69 AC 29 ms
9,288 KB
testcase_70 AC 31 ms
9,276 KB
testcase_71 AC 31 ms
9,296 KB
testcase_72 AC 62 ms
9,352 KB
testcase_73 AC 106 ms
9,364 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp:470:1: 警告: ISO C++ では型の無い ‘main’ の宣言を禁止しています [-Wreturn-type]
  470 | main()
      | ^~~~

ソースコード

diff #

#ifdef LOCAL
    #define _GLIBCXX_DEBUG
    #define __clock__
#else
    #pragma GCC optimize("Ofast")
    // #define NDEBUG
#endif
// #define __buffer_check__
#define __precision__ 10
#define iostream_untie true
#define debug_stream std::cerr

#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>

#define all(v) std::begin(v), std::end(v)
#define rall(v) std::rbegin(v), std::rend(v)
#define odd(n) ((n) & 1)
#define even(n) (not __odd(n))
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)

using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using pii = std::pair<i32, i32>; using pll = std::pair<i64, i64>;
template <class T> using heap = std::priority_queue<T>;
template <class T> using rheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using hashset = std::unordered_set<T>;
template <class Key, class Value> using hashmap = std::unordered_map<Key, Value>;

namespace setting
{
    using namespace std::chrono;
    system_clock::time_point start_time, end_time;
    long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }
    void print_elapsed_time() { debug_stream << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n"; }
    void buffer_check()
    {
        char bufc;
        if(std::cin >> bufc) debug_stream << "\n\033[1;35mwarning\033[0m: buffer not empty.\n";
    }
    struct setupper
    {
        setupper()
        {
            if(iostream_untie) std::ios::sync_with_stdio(false), std::cin.tie(nullptr);
            std::cout << std::fixed << std::setprecision(__precision__);
    #ifdef stderr_path
            if(freopen(stderr_path, "a", stderr))
            {
                std::cerr << std::fixed << std::setprecision(__precision__);
            }
    #endif
    #ifdef stdout_path
            if(not freopen(stdout_path, "w", stdout))
            {
                freopen("CON", "w", stdout);
                debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdout file.\n";
            }
            std::cout << "";
    #endif
    #ifdef stdin_path
            if(not freopen(stdin_path, "r", stdin))
            {
                freopen("CON", "r", stdin);
                debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdin file.\n";
            }
    #endif
    #ifdef LOCAL
            debug_stream << "----- stderr at LOCAL -----\n\n";
            atexit(print_elapsed_time);
    #endif
    #ifdef __buffer_check__
            atexit(buffer_check);
    #endif
    #if defined(__clock__) || defined(LOCAL)
            start_time = system_clock::now();
    #endif
        }
    } __setupper; // struct setupper
} // namespace setting
#ifdef __clock__
class
{
    std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln;
    std::string built_func, last_func; bool is_built = false;
public:
    void build(int crt_ln, const std::string &crt_func)
    {
        is_built = true, last_pt = built_pt = std::chrono::system_clock::now(),  last_ln = built_ln = crt_ln, last_func = built_func = crt_func;
    }
    void set(int crt_ln, const std::string &crt_func)
    {
        if(is_built) last_pt = std::chrono::system_clock::now(), last_ln = crt_ln, last_func = crt_func;
        else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n";
    }
    void get(int crt_ln, const std::string &crt_func)
    {
        if(is_built)
        {
            std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now());
            long long diff = std::chrono::duration_cast<std::chrono::milliseconds>(crt_pt - last_pt).count();
            debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]";
            if(last_ln == built_ln) debug_stream << " (when built)";
            debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n";
            last_pt = built_pt, last_ln = built_ln, last_func = built_func;
        }
        else
        {
            debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n";
        }
    }
} myclock; // unnamed class
    #define build_clock() myclock.build(__LINE__, __func__)
    #define set_clock() myclock.set(__LINE__, __func__)
    #define get_clock() myclock.get(__LINE__, __func__)
#else
    #define build_clock() ((void)0)
    #define set_clock() ((void)0)
    #define get_clock() ((void)0)
#endif

namespace std
{
    // hash
    template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
    template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
    template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
    template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
    template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
    // iostream
    template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
    template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
    template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
    template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
    template <class... T> istream &operator>>(istream &is, tuple<T...> &t)  { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
    template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
    template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
    template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
    template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t)  { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
    template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std

#ifdef LOCAL
    #define dump(...)                                                              \
        debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n",       \
            dump_func(#__VA_ARGS__, __VA_ARGS__)
    template <class T> void dump_func(const char *ptr, const T &x)
    {
        debug_stream << '\t';
        for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ') debug_stream << c;
        debug_stream << " : " << x << '\n';
    }
    template <class T, class... rest_t> void dump_func(const char *ptr, const T &x, rest_t... rest)
    {
        debug_stream << '\t';
        for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ') debug_stream << c;
        debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...);
    }
#else
    #define dump(...) ((void)0)
#endif
template <class P> void read_range(P __first, P __second) { for(P i = __first; i != __second; ++i) std::cin >> *i; }
template <class P> void write_range(P __first, P __second) { for(P i = __first; i != __second; std::cout << (++i == __second ? '\n' : ' ')) std::cout << *i; }

// substitue y for x if x > y.
template <class T> inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitue y for x if x < y.
template <class T> inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search.
i64 bin(const std::function<bool(i64)> &pred, i64 ok, i64 ng)
{
    while(std::abs(ok - ng) > 1) { i64 mid = (ok + ng) / 2; (pred(mid) ? ok : ng) = mid; }
    return ok;
}
double bin(const std::function<bool(double)> &pred, double ok, double ng, const double eps)
{
    while(std::abs(ok - ng) > eps) { double mid = (ok + ng) / 2; (pred(mid) ? ok : ng) = mid; }
    return ok;
}
// be careful that val is type-sensitive.
template <class T, class A, size_t ext_n> void init(A (&array)[ext_n], const T &val) { std::fill((T *)array, (T *)(array + ext_n), val); }
// reset all bits.
template <class A> void reset(A &array) { memset(array, 0, sizeof(array)); }


/* The main code follows. */

// #line 2 "Lazy_segment_tree.hpp"
// verified at https://judge.yosupo.jp/submission/2904
#ifndef Lazy_segment_tree_hpp
#define Lazy_segment_tree_hpp
#include <cassert>
#include <functional>
#include <vector>

template <class Monoid, class Action>
class lazy_segment_tree
{
    using value_type = typename Monoid::value_type;
    using operand_type = typename Action::value_type;
    Monoid *const monoid_ptr, &monoid;
    Action *const action_ptr, &action;
    const size_t orig_n, height, ext_n;
    std::vector<value_type> data;
    std::vector<operand_type> lazy;

    void recalc(size_t node) { data[node] = monoid(data[node << 1], data[node << 1 | 1]); }

    void apply(size_t index, const operand_type &operand)
    {
        action.act(data[index], operand);
        if(index < ext_n) action(lazy[index], operand);
    }

    void push(size_t index)
    {
        if(index < ext_n)
        {
            apply(index << 1, lazy[index]);
            apply(index << 1 | 1, lazy[index]);
            lazy[index] = action.identity();
        }
    }

    void left_bound(size_t index, const std::function<bool(const value_type &)> &pred,
                    size_t node, size_t begin, size_t end, value_type &now, size_t &res)
    {
        if(index <= begin || end < res) return;
        if(end <= index)
        {
            const value_type nxt = monoid(data[node], now);
            if(pred(nxt))
            {
                res = begin, now = nxt;
                return;
            }
        }
        if(node < ext_n)
        {
            push(node);
            // search the right child first
            left_bound(index, pred, node << 1 | 1, (begin + end) >> 1, end, now, res);
            left_bound(index, pred, node << 1, begin, (begin + end) >> 1, now, res);
        }
    }

    void right_bound(size_t index, const std::function<bool(const value_type &)> &pred,
                    size_t node, size_t begin, size_t end, value_type &now, size_t &res)
    {
        if(index >= end || begin > res) return;
        if(begin >= index)
        {
            const value_type nxt = monoid(now, data[node]);
            if(pred(nxt))
            {
                res = end, now = nxt;
                return;
            }
        }
        if(node < ext_n)
        {
            push(node);
            // search the left child first
            right_bound(index, pred, node << 1, begin, (begin + end) >> 1, now, res);
            right_bound(index, pred, node << 1 | 1, (begin + end) >> 1, end, now, res);
        }
    }

    lazy_segment_tree(size_t n, Monoid *const _monoid_ptr, bool monoid_new_ptr, Action *const _action_ptr, bool action_new_ptr)
        : monoid_ptr(monoid_new_ptr ? _monoid_ptr : nullptr), monoid(*_monoid_ptr), action_ptr(action_new_ptr ? _action_ptr : nullptr), action(*_action_ptr),
            orig_n{n}, height(orig_n > 1 ? 32 - __builtin_clz(orig_n - 1) : 0), ext_n{1u << height},
            data(ext_n << 1, monoid.identity()), lazy(ext_n, action.identity()) {}

    lazy_segment_tree(size_t n, const value_type &val, Monoid *const _monoid_ptr, bool monoid_new_ptr, Action *const _action_ptr, bool action_new_ptr)
        : monoid_ptr(monoid_new_ptr ? _monoid_ptr : nullptr), monoid(*_monoid_ptr), action_ptr(action_new_ptr ? _action_ptr : nullptr), action(*_action_ptr),
            orig_n{n}, height(orig_n > 1 ? 32 - __builtin_clz(orig_n - 1) : 0), ext_n{1u << height},
            data(ext_n << 1), lazy(ext_n, action.identity())
    {
        std::fill(data.begin() + ext_n, data.end(), val);
        for(size_t i = ext_n - 1; i; --i) recalc(i);
    }

    template <class iter_type>
    lazy_segment_tree(iter_type __first, iter_type __last, Monoid *const _monoid_ptr, bool monoid_new_ptr, Action *const _action_ptr, bool action_new_ptr)
        : monoid_ptr(monoid_new_ptr ? _monoid_ptr : nullptr), monoid(*_monoid_ptr), action_ptr(action_new_ptr ? _action_ptr : nullptr), action(*_action_ptr),
            orig_n(std::distance(__first, __last)), height(orig_n > 1 ? 32 - __builtin_clz(orig_n - 1) : 0), ext_n{1u << height},
            data(ext_n << 1), lazy(ext_n, action.identity())
    {
        static_assert(std::is_same<typename std::iterator_traits<iter_type>::value_type, value_type>::value, "iterator's value_type should be equal to Monoid's");
        std::fill(std::copy(__first, __last, data.begin() + ext_n), data.end(), monoid.identity());
        for(size_t i = ext_n - 1; i; --i) recalc(i);
    }

public:
    explicit lazy_segment_tree(size_t n) : lazy_segment_tree(n, new Monoid, true, new Action, true) {}
    lazy_segment_tree(size_t n, Monoid &_monoid) : lazy_segment_tree(n, &_monoid, false, new Action, true) {}
    lazy_segment_tree(size_t n, Action &_action) : lazy_segment_tree(n, new Monoid, true, &_action, false) {}
    lazy_segment_tree(size_t n, Monoid &_monoid, Action &_action) : lazy_segment_tree(n, &_monoid, false, &_action, false) {}

    lazy_segment_tree(size_t n, const value_type &val) : lazy_segment_tree(n, val, new Monoid, true, new Action, true) {}
    lazy_segment_tree(size_t n, const value_type &val, Monoid &_monoid) : lazy_segment_tree(n, val, &_monoid, false, new Action, true) {}
    lazy_segment_tree(size_t n, const value_type &val, Action &_action) : lazy_segment_tree(n, val, new Monoid, true, &_action, false) {}
    lazy_segment_tree(size_t n, const value_type &val, Monoid &_monoid, Action &_action) : lazy_segment_tree(n, val, &_monoid, false, &_action, false) {}

    template <class iter_type, class = typename std::iterator_traits<iter_type>::value_type>
    lazy_segment_tree(const iter_type __first, const iter_type __last) : lazy_segment_tree(__first, __last, new Monoid, true, new Action, true) {}
    template <class iter_type, class = typename std::iterator_traits<iter_type>::value_type>
    lazy_segment_tree(const iter_type __first, const iter_type __last, Monoid &_monoid) : lazy_segment_tree(__first, __last, &_monoid, false, new Action, true) {}
    template <class iter_type, class = typename std::iterator_traits<iter_type>::value_type>
    lazy_segment_tree(const iter_type __first, const iter_type __last, Action &_action) : lazy_segment_tree(__first, __last, new Monoid, true, &_action, false) {}
    template <class iter_type, class = typename std::iterator_traits<iter_type>::value_type>
    lazy_segment_tree(const iter_type __first, const iter_type __last, Monoid &_monoid, Action &_action) : lazy_segment_tree(__first, __last, &_monoid, false, &_action, false) {}

    ~lazy_segment_tree() { delete monoid_ptr; delete action_ptr; }

    // copy of the element at position i.
    value_type operator[](size_t i) { return fold(i, i + 1); }

    void update(size_t index, const operand_type &operand) { update(index, index + 1, operand); }

    void update(size_t begin, size_t end, const operand_type &operand)
    {
        assert(0 <= begin && end <= orig_n);
        begin += ext_n, end += ext_n - 1;
        for(size_t i = height; i; --i) push(begin >> i), push(end >> i);
        for(size_t l = begin, r = end + 1; end; l >>= 1, r >>= 1)
        {
            if(l < r)
            {
                if(l & 1) apply(l++, operand);
                if(r & 1) apply(--r, operand);
            }
            if(begin >>= 1, end >>= 1)
            {
                recalc(begin), recalc(end);
            }
        }
    }

    value_type fold(size_t begin, size_t end)
    {
        assert(0 <= begin && end <= orig_n);
        begin += ext_n, end += ext_n - 1;
        value_type left_val{monoid.identity()}, right_val{monoid.identity()};
        for(size_t l = begin, r = end + 1; end; l >>= 1, r >>= 1)
        {
            if(l < r)
            {
                if(l & 1) left_val = monoid(left_val, data[l++]);
                if(r & 1) right_val = monoid(data[--r], right_val);
            }
            if(begin >>= 1, end >>= 1)
            {
                action.act(left_val, lazy[begin]);
                action.act(right_val, lazy[end]);
            }
        }
        return monoid(left_val, right_val);
    }

    // minimum l where range [l, index) meets the condition.
    size_t left_bound(size_t index, const std::function<bool(const value_type &)> &pred)
    {
        assert(index <= orig_n);
        size_t res = index;
        value_type now = monoid.identity();
        left_bound(index, pred, 1, 0, ext_n, now, res);
        return res;
    }

    // maximum r where range [index, r) meets the condition.
    size_t right_bound(size_t index, const std::function<bool(const value_type &)> &pred)
    {
        assert(index < orig_n);
        size_t res = index;
        value_type now = monoid.identity();
        right_bound(index, pred, 1, 0, ext_n, now, res);
        return res < orig_n ? res : orig_n;
    }
}; //class lazy_segment_tree

#endif // Lazy_segment_tree_hpp

using namespace std;

struct info
{
    int id; char co;
};

struct monoid
{
    using value_type = info;
    value_type identity()
    {
        return {(int)1e6,0};
    }
    value_type operator()(const value_type &x, const value_type &y)
    {
        if(x.id>y.id) return y;
        return x;
    }
};

struct actor
{
    using value_type = info;
    value_type identity()
    {
        return {(int)1e6,0};
    }
    void operator()(value_type &x, const value_type &y)
    {
        if(x.id>y.id) x=y;
    }
    template <class other>
    void act(other &x, const value_type &y)
    {
        if(x.id>y.id) x=y;
    }
};



struct solver
{
    const string sig="YKC";
    solver()
    {
        int n,m; cin>>n>>m;
        lazy_segment_tree<monoid,actor> laz(n);
        for(int i=0; i<m; ++i)
        {
            int l,r; char t; cin>>l>>r>>t;
            --l;
            laz.update(l,r,{i,t});
        }
        int cnt[3]={};
        for(int i=0; i<n; ++i)
        {
            cnt[sig.find(laz[i].co)]++;
        }
        cout << cnt[0] << " " << cnt[1] << " " << cnt[2] << "\n";
    }
};

main()
{
    u32 t = 1;
#ifdef LOCAL
    t=2;
#endif
    // t = -1; // infinite loop
    // cin >> t; // case number given
    while(t--) solver();
}
0