結果

問題 No.971 いたずらっ子
ユーザー もりをもりを
提出日時 2020-01-17 21:41:37
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 9,308 bytes
コンパイル時間 2,077 ms
コンパイル使用メモリ 184,196 KB
実行使用メモリ 570,220 KB
最終ジャッジ日時 2024-06-25 19:10:47
合計ジャッジ時間 19,797 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 TLE -
testcase_01 TLE -
testcase_02 WA -
testcase_03 MLE -
testcase_04 MLE -
testcase_05 MLE -
testcase_06 AC 1,456 ms
442,208 KB
testcase_07 WA -
testcase_08 AC 473 ms
151,832 KB
testcase_09 AC 448 ms
144,976 KB
testcase_10 AC 13 ms
8,064 KB
testcase_11 AC 2 ms
6,940 KB
testcase_12 AC 2 ms
6,944 KB
testcase_13 AC 2 ms
6,944 KB
testcase_14 WA -
testcase_15 AC 2 ms
6,940 KB
testcase_16 AC 2 ms
6,940 KB
testcase_17 AC 2 ms
6,940 KB
testcase_18 AC 2 ms
6,944 KB
testcase_19 AC 2 ms
6,944 KB
testcase_20 AC 2 ms
6,944 KB
testcase_21 AC 2 ms
6,944 KB
testcase_22 AC 2 ms
6,940 KB
testcase_23 AC 2 ms
6,940 KB
testcase_24 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define int long long
//TEMPLATE START---------------8<---------------8<---------------8<---------------8<---------------//
typedef long long ll;       typedef long double ld;  typedef pair<int,int> pii; typedef pair<ll,ll> pll;  typedef vector<int> vi;   typedef vector<ll> vl;
typedef vector<string> vst; typedef vector<bool> vb; typedef vector<ld> vld;    typedef vector<pii> vpii; typedef vector<pll> vpll; typedef vector<vector<int> > vvi;
const int INF = (0x7FFFFFFFL); const ll INFF = (0x7FFFFFFFFFFFFFFFL); const string ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const int MOD = 1e9 + 7;       const int MODD = 998244353;            const string alphabet = "abcdefghijklmnopqrstuvwxyz";
const double PI = acos(-1.0);  const double EPS = 1e-9;               const string Alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
int dx[9] = { 1, 0, -1,  0,  1, -1, -1, 1, 0 };
int dy[9] = { 0, 1,  0, -1, -1, -1,  1, 1, 0 };
#define ln '\n'
#define scnaf scanf
#define sacnf scanf
#define sancf scanf
#define SS(type, ...)type __VA_ARGS__;MACRO_VAR_Scan(__VA_ARGS__);
template<typename T> void MACRO_VAR_Scan(T& t){cin >> t;}template<typename First, typename...Rest> void MACRO_VAR_Scan(First& first, Rest&...rest){cin >> first;MACRO_VAR_Scan(rest...);}
#define SV(type,c,n) vector<type> c(n);for(auto& i:c)cin >> i;
#define SVV(type,c,n,m) vector<vector<type>> c(n,vector<type>(m));for(auto& r:c)for(auto& i:r)cin >> i;
template<class T,class U>ostream &operator<<(ostream &o,const pair<T,U>&j){o<<"{"<<j.first<<", "<<j.second<<"}";return o;}
template<class T,class U>ostream &operator<<(ostream &o,const map<T,U>&j){o<<"{";for(auto t=j.begin();t!=j.end();++t)o<<(t!=j.begin()?", ":"")<<*t;o<<"}";return o;}
template<class T>ostream &operator<<(ostream &o,const set<T>&j){o<<"{";for(auto t=j.begin();t!=j.end();++t)o<<(t!=j.begin()?", ":"")<<*t;o<<"}";return o;}
template<class T>ostream &operator<<(ostream &o,const multiset<T>&j){o<<"{";for(auto t=j.begin();t!=j.end();++t)o<<(t!=j.begin()?", ":"")<<*t;o<<"}";return o;}
template<class T>ostream &operator<<(ostream &o,const vector<T>&j){o<<"{";for(int i=0;i<(int)j.size();++i)o<<(i>0?", ":"")<<j[i];o<<"}";return o;}
inline int print(void){cout << endl; return 0;}
template<class Head> int print(Head&& head){cout << head;print();return 0;} template<class Head,class... Tail> int print(Head&& head,Tail&&... tail){cout<<head<<" ";print(forward<Tail>(tail)...);return 0;}
#ifdef LOCAL
inline int dump(void){cerr << endl; return 0;}
template<class Head> int dump(Head&& head){cerr << head;dump();return 0;}
template<class Head,class... Tail> int dump(Head&& head,Tail&&... tail){cerr<<head<<" ";dump(forward<Tail>(tail)...);return 0;}
#define debug(...) do{cerr<<__LINE__<<":	"<<#__VA_ARGS__<<" = ";dump(__VA_ARGS__);}while(0)
#define ER(x)  cerr << #x << " = " << (x) << endl;
#define ERV(v) {cerr << #v << " : ";for(const auto& xxx : v){cerr << xxx << " ";}cerr << "\n";}
#else
#define dump(...)
#define debug(...)
#define ER(x)
#define ERV(v)
#endif
template<typename T> void PA(T &a){int ASIZE=sizeof(a)/sizeof(a[0]);for(int ii=0;ii<ASIZE;++ii){cout<<a[ii]<<" \n"[ii==ASIZE-1];}}
template<typename T> void PV(T &v){int VSIZE=v.size();for(int ii=0;ii<VSIZE;++ii){cout<<v[ii]<<" \n"[ii==VSIZE-1];}}
inline int YES(bool x){cout<<((x)?"YES":"NO")<<endl;return 0;} inline int Yes(bool x){cout<<((x)?"Yes":"No")<<endl;return 0;}  inline int yes(bool x){cout<<((x)?"yes":"no")<<endl;return 0;}
inline int yES(bool x){cout<<((x)?"yES":"nO")<<endl;return 0;} inline int Yay(bool x){cout<<((x)?"Yay!":":(")<<endl;return 0;}
template<typename A,typename B> void sankou(bool x,A a,B b){cout<<((x)?(a):(b))<<endl;}
#define _overload3(_1,_2,_3,name,...) name
#define _REP(i,n) REPI(i,0,n)
#define REPI(i,a,b) for(ll i=ll(a);i<ll(b);++i)
#define REP(...) _overload3(__VA_ARGS__,REPI,_REP,)(__VA_ARGS__)
#define _RREP(i,n) RREPI(i,n,0)
#define RREPI(i,a,b) for(ll i=ll(a);i>=ll(b);--i)
#define RREP(...) _overload3(__VA_ARGS__,RREPI,_RREP,)(__VA_ARGS__)
#define EACH(e,v) for(auto& e : v)
#define PERM(v) sort((v).begin(),(v).end());for(bool c##p=1;c##p;c##p=next_permutation((v).begin(),(v).end()))
#define ADD(a,b) a=(a+ll(b))%MOD
#define MUL(a,b) a=(a*ll(b))%MOD
inline ll MOP(ll x,ll n,ll m=MOD){ll r=1;while(n>0){if(n&1)(r*=x)%=m;(x*=x)%=m;n>>=1;}return r;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}inline ll lcm(ll a,ll b){return a*b/gcd(a,b);}inline ll POW(ll a,ll b){ll c=1ll;do{if(b&1)c*=1ll*a;a*=1ll*a;}while(b>>=1);return c;}
template<typename T,typename A,typename B> inline bool between(T x,A a,B b) {return ((a<=x)&&(x<b));}template<class T> inline T sqr(T x){return x*x;}
template<typename A,typename B> inline bool chmax(A &a,const B &b){if(a<b){a=b;return 1;}return 0;}
template<typename A,typename B> inline bool chmin(A &a,const B &b){if(a>b){a=b;return 1;}return 0;}
#define tmax(x,y,z) max((x),max((y),(z)))
#define tmin(x,y,z) min((x),min((y),(z)))
#define PB emplace_back
#define MP make_pair
#define MT make_tuple
#define all(v) (v).begin(),(v).end()
#define rall(v) (v).rbegin(),(v).rend()
#define SORT(v) sort((v).begin(),(v).end())
#define RSORT(v) sort((v).rbegin(),(v).rend())
#define EXIST(s,e) (find((s).begin(),(s).end(),(e))!=(s).end())
#define EXISTST(s,c) (((s).find(c))!=string::npos)
#define POSL(x,val) (lower_bound(x.begin(),x.end(),val)-x.begin())
#define POSU(x,val) (upper_bound(x.begin(),x.end(),val)-x.begin())
#define GEQ(x,val) (int)(x).size() - POSL((x),(val))
#define GREATER(x,val) (int)(x).size() - POSU((x),(val))
#define LEQ(x,val) POSU((x),(val))
#define LESS(x,val) POSL((x),(val))
#define SZV(a) int((a).size())
#define SZA(a) sizeof(a)/sizeof(a[0])
#define ZERO(a) memset(a,0,sizeof(a))
#define MINUS(a) memset(a,0xff,sizeof(a))
#define MEMINF(a) memset(a,0x3f,sizeof(a))
#define FILL(a,b) memset(a,b,sizeof(a))
#define UNIQUE(v) sort((v).begin(),(v).end());(v).erase(unique((v).begin(),(v).end()),(v).end())
struct abracadabra{
    abracadabra(){
        cin.tie(0); ios::sync_with_stdio(0);
        cout << fixed << setprecision(20);
        cerr << fixed << setprecision(5);
    };
} ABRACADABRA;

//TEMPLATE END---------------8<---------------8<---------------8<---------------8<---------------//

template<typename T> struct Edge {
    int from, to;
    T weight;
    Edge() : from(0), to(0), weight(0) {}
    Edge(int f, int t, T w) : from(f), to(t), weight(w) {}
};
template<typename T> using Edges = vector< Edge< T > >;
template<typename T> using Graph = vector< Edges< T > >;
template<typename T> void     add_edge(Graph< T > &g, int from, int to, T w = 1) { g[from].emplace_back(from, to, w); g[to].emplace_back(to, from, w); }
template<typename T> void      add_arc(Graph< T > &g, int from, int to, T w = 1) { g[from].emplace_back(from, to, w); }
template<typename T> void add_to_edges(Edges< T > &e, int from, int to, T w = 1) { e.emplace_back(from, to, w); }

/*
・グラフ用テンプレート
    > Dijkstra
    > BellmanFord
    > WarshallFloyd
    > Kruskal
[応用] 単一終点最短路問題は, すべての有向辺を逆向きに張り替えると, 単一始点最短路問題に帰着できる.
[使用例]
Graph<int> g(V);                // 頂点数V, 重さの型がintのグラフを宣言
add_edge(g, a, b, c);           // グラフgに, 始点a, 終点b, 重さcの無向辺を追加
add_arc(g, a, b, c);            // グラフgに, 始点a, 終点b, 重さcの有向辺を追加
add_to_edges(edges, a, b, c);   // 辺集合edgesに, 始点a, 終点b, 重さcの辺を追加
*/

template<typename T> vector< T > Dijkstra(Graph< T > &g, int from) {
    const auto INF = numeric_limits< T >::max() / 10;
    vector< T > dist(g.size(), INF);
    dist[from] = 0;
    using P = pair< T, int >;
    priority_queue< P, vector< P >, greater< P > > que;
    que.emplace(dist[from], from);
    while (not que.empty()) {
        T weight; int idx;
        tie(weight, idx) = que.top(); que.pop();
        if (dist[idx] < weight) continue;
        for (auto &e : g[idx]) {
            auto next_weight = weight + e.weight;
            if (dist[e.to] <= next_weight) continue;
            dist[e.to] = next_weight;
            que.emplace(dist[e.to], e.to);
        }
    }
    return dist;
}

/*
・ダイクストラ法
    > O(ElogV) [E:辺の数, V:頂点の数]
[備考] 負辺の存在しないグラフに対する単一始点全点間最短路を求めるアルゴリズム
[注意] 結果を足し合わせる際, INFの大きさに注意
[使用例] auto dij = Dijkstra(g, s);     // グラフgにおける, 始点sからの最短路
*/

signed main() {

    SS(int, H, W);
    SV(string, board, H);

    Graph<ll> g(H * W);

    auto f  = [&](int h, int w) -> int  { return h * W + w; };
    auto in = [&](int h, int w) -> bool { return h >= 0 and h < H and w >= 0 and w < W; };

    REP(i, H) REP(j, W) {
        REP(k, 4) {
            int ni = i + dx[k];
            int nj = j + dy[k];
            if (not in(ni, nj)) continue;
            if (board[ni][nj] == 'k') {
                add_arc(g, f(i, j), f(ni, nj), 1 + (ni + nj));
            } else {
                add_arc(g, f(i, j), f(ni, nj), 1LL);
            }
        }
    }

    auto dij = Dijkstra(g, f(0, 0));
    print(dij[f(H - 1, W - 1)]);

}
0