結果
| 問題 |
No.971 いたずらっ子
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-01-17 21:49:41 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,681 ms / 2,000 ms |
| コード長 | 7,724 bytes |
| コンパイル時間 | 9,038 ms |
| コンパイル使用メモリ | 282,572 KB |
| 最終ジャッジ日時 | 2025-01-08 18:27:04 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 21 |
ソースコード
#include <bits/stdc++.h>
#define LLI long long int
#define FOR(v, a, b) for(LLI v = (a); v < (b); ++v)
#define FORE(v, a, b) for(LLI v = (a); v <= (b); ++v)
#define REP(v, n) FOR(v, 0, n)
#define REPE(v, n) FORE(v, 0, n)
#define REV(v, a, b) for(LLI v = (a); v >= (b); --v)
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it)
#define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it)
#define EXIST(c,x) ((c).find(x) != (c).end())
#define fst first
#define snd second
#define popcount __builtin_popcount
#define UNIQ(v) (v).erase(unique(ALL(v)), (v).end())
#define bit(i) (1LL<<(i))
#ifdef DEBUG
#include <misc/C++/Debug.cpp>
#else
#define dump(...) ((void)0)
#endif
#define gcd __gcd
using namespace std;
template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;}
template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;}
template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;}
template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);}
template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);}
template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);}
struct Init{
Init(){
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(12);
cerr << fixed << setprecision(12);
}
}init;
struct Point{
int x, y;
Point(): x(0), y(0){}
Point(int x, int y): x(x), y(y){}
Point& operator+=(const Point &a){this->x += a.x; this->y += a.y; return *this;}
Point& operator-=(const Point &a){this->x -= a.x; this->y -= a.y; return *this;}
};
Point operator+(const Point &a, const Point &b){return Point(a.x+b.x, a.y+b.y);}
Point operator-(const Point &a, const Point &b){return Point(a.x-b.x, a.y-b.y);}
bool operator==(const Point &a, const Point &b){return a.x == b.x and a.y == b.y;}
bool operator!=(const Point &a, const Point &b){return !(a == b);}
std::ostream& operator<<(std::ostream &os, const Point &a){
os << "(" << a.x << "," << a.y << ")";
return os;
}
namespace grid{
const std::vector<Point> dir4 = {Point(0,1), Point(0,-1), Point(1,0), Point(-1,0)};
const std::vector<Point> dir8 = {Point(-1,-1), Point(-1,0), Point(-1,1), Point(1,-1), Point(1,0), Point(1,1), Point(0,-1), Point(0,1)};
}
template <typename Cost = int> class Edge{
public:
int from,to;
Cost cost;
Edge() {}
Edge(int to, Cost cost): to(to), cost(cost){}
Edge(int from, int to, Cost cost): from(from), to(to), cost(cost){}
Edge rev() const {return Edge(to,from,cost);}
friend std::ostream& operator<<(std::ostream &os, const Edge &e){
os << "(FROM: " << e.from << "," << "TO: " << e.to << "," << "COST: " << e.cost << ")";
return os;
}
};
template <typename T> using Graph = std::vector<std::vector<Edge<T>>>;
template <typename T> using Tree = std::vector<std::vector<Edge<T>>>;
template <typename C, typename T> void add_edge(C &g, int from, int to, T w){
g[from].push_back(Edge<T>(from, to, w));
}
template <typename C, typename T> void add_undirected(C &g, int a, int b, T w){
g[a].push_back(Edge<T>(a, b, w));
g[b].push_back(Edge<T>(b, a, w));
}
template <typename T, typename Checker, typename Generator>
Graph<T> grid_to_graph(int H, int W,
const std::vector<Point> &dir,
const Checker &check_passable,
const std::vector<std::vector<int>> &index,
const Generator &generate_edge_cost)
{
Graph<T> ret(H * W);
for(int i = 0; i < H; ++i){
for(int j = 0; j < W; ++j){
auto p = Point(i, j);
for(auto &d : dir){
auto q = Point(i, j) + d;
if(q.x < 0 or q.x >= H or q.y < 0 or q.y >= W or not check_passable(p, q)) continue;
auto e = Edge<T>(index[p.x][p.y], index[q.x][q.y], generate_edge_cost(p, q));
ret[index[p.x][p.y]].emplace_back(e);
}
}
}
return ret;
}
template <typename T>
class Unbounded{
enum class Tag { Value, PositiveInfinity, NegativeInfinity } tag;
T val;
public:
Unbounded(Tag tag): tag(tag){}
Unbounded(const T &val): tag(Tag::Value), val(val){}
auto& operator=(const T &rhs){
this->tag = Tag::Value;
this->val = rhs;
return *this;
}
static auto pos_inf(){return Unbounded(Tag::PositiveInfinity);}
static auto neg_inf(){return Unbounded(Tag::NegativeInfinity);}
static auto value(const T &a){return Unbounded(a);}
inline bool is_pos_inf() const {return tag == Tag::PositiveInfinity;}
inline bool is_neg_inf() const {return tag == Tag::NegativeInfinity;}
inline bool is_value() const {return tag == Tag::Value;}
const T& get_value(){return this->val;}
inline bool operator==(const Unbounded &rhs) const {
if(this->tag == rhs.tag){
if(this->tag == Tag::Value) return this->val == rhs.val;
else return true;
}
return false;
}
friend std::ostream& operator<<(std::ostream &os, const Unbounded &rhs){
switch(rhs.tag){
case Tag::Value: os << rhs.val; break;
case Tag::PositiveInfinity: os << "INF"; break;
case Tag::NegativeInfinity: os << "-INF"; break;
}
return os;
}
};
template <typename T, int MOD = 1000000007>
struct Dijkstra{
using Result = Unbounded<T>;
int n;
std::vector<Result> dist;
std::vector<int64_t> path_count;
Dijkstra(const Graph<T> &graph, int src):
n(graph.size()), dist(n, Result::pos_inf()), path_count(n)
{
std::vector<bool> check(n, false);
std::priority_queue<std::pair<T,int>, std::vector<std::pair<T,int>>, std::greater<std::pair<T,int>>> pq;
path_count[src] = 1;
dist[src] = 0;
pq.push({0, src});
while(not pq.empty()){
int i;
T d;
std::tie(d,i) = pq.top(); pq.pop();
if(check[i]) continue;
check[i] = true;
for(auto &e : graph[i]){
if(dist[e.to].is_pos_inf()){
dist[e.to] = d + e.cost;
path_count[e.to] = path_count[e.from];
pq.push({dist[e.to].get_value(), e.to});
}else{
if(dist[e.to].get_value() > d + e.cost){
dist[e.to] = d + e.cost;
path_count[e.to] = path_count[e.from];
if(not check[e.to]) pq.push({dist[e.to].get_value(), e.to});
}else if(dist[e.to].get_value() == d + e.cost){
(path_count[e.to] += path_count[e.from]) %= MOD;
}
}
}
}
}
};
int main(){
int H, W;
while(cin >> H >> W){
vector<string> a(H); cin >> a;
auto index = vector(H, vector<int>(W));
{
int k = 0;
REP(i,H){
REP(j,W){
index[i][j] = k++;
}
}
}
auto g = grid_to_graph<int>(H, W,
grid::dir4,
[](const Point &p, const Point &q){return q == p + Point(0, 1) or q == p + Point(1, 0);},
index,
[&](const Point &p, const Point &q){
if(a[q.x][q.y] == 'k'){
return 1 + q.x + q.y;
}else{
return 1;
}
});
auto res = Dijkstra(g, index[0][0]).dist;
/*
REP(i,H){
REP(j,W){
cerr << res[index[i][j]] << " ";
}
cerr << endl;
}*/
cout << res[index[H-1][W-1]] << endl;
}
return 0;
}