結果

問題 No.974 最後の日までに
ユーザー jelljell
提出日時 2020-01-17 23:11:48
言語 C++14
(gcc 13.2.0 + boost 1.83.0)
結果
MLE  
実行時間 -
コード長 19,393 bytes
コンパイル時間 1,813 ms
コンパイル使用メモリ 142,612 KB
実行使用メモリ 814,540 KB
最終ジャッジ日時 2023-09-08 06:56:05
合計ジャッジ時間 4,642 ms
ジャッジサーバーID
(参考情報)
judge12 / judge13
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 MLE -
testcase_01 -- -
testcase_02 -- -
testcase_03 -- -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
testcase_45 -- -
testcase_46 -- -
testcase_47 -- -
testcase_48 -- -
testcase_49 -- -
testcase_50 -- -
testcase_51 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

/* preprocessor start */
#ifdef LOCAL
    #define _GLIBCXX_DEBUG  // gcc
    #define _LIBCPP_DEBUG 0 // clang
    #define __clock__
#else
    #pragma GCC optimize("Ofast")
    // #define _GLIBCXX_DEBUG
    // #define _LIBCPP_DEBUG 0
    // #define NDEBUG
#endif
// #define __buffer_check__
#define __precision__ 10
#define iostream_untie true
#define debug_stream std::cerr
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <valarray>
#define __all(v) std::begin(v), std::end(v)
#define __rall(v) std::rbegin(v), std::rend(v)
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)
/* preprocessor end */

namespace setting
{
    using namespace std::chrono;
    system_clock::time_point start_time, end_time;
    long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }
    void print_elapsed_time() { debug_stream << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n"; }
    void buffer_check() { char bufc; if(std::cin >> bufc) debug_stream << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; }
    struct setupper
    {
        setupper()
        {
            using namespace std;
            if(iostream_untie) ios::sync_with_stdio(false), cin.tie(nullptr);
            cout << fixed << setprecision(__precision__);
    #ifdef stderr_path
            if(freopen(stderr_path, "a", stderr)) cerr << fixed << setprecision(__precision__);
    #endif
    #ifdef LOCAL
            debug_stream << "\n----- stderr at LOCAL -----\n\n";
    #endif
    #ifdef __buffer_check__
            atexit(buffer_check);
    #endif
    #ifdef __clock__
            start_time = system_clock::now();
            atexit(print_elapsed_time);
    #endif
        }
    } __setupper; // struct setupper
} // namespace setting
#ifdef __clock__
class
{
    std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln;
    std::string built_func, last_func; bool is_built = false;
public:
    void build(int crt_ln, const std::string &crt_func)
    {
        is_built = true, last_pt = built_pt = std::chrono::system_clock::now(), last_ln = built_ln = crt_ln, last_func = built_func = crt_func;
    }
    void set(int crt_ln, const std::string &crt_func)
    {
        if(is_built) last_pt = std::chrono::system_clock::now(), last_ln = crt_ln, last_func = crt_func;
        else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n";
    }
    void get(int crt_ln, const std::string &crt_func)
    {
        if(is_built)
        {
            std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now());
            long long diff = std::chrono::duration_cast<std::chrono::milliseconds>(crt_pt - last_pt).count();
            debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]";
            if(last_ln == built_ln) debug_stream << " (when built)";
            debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n";
            last_pt = built_pt, last_ln = built_ln, last_func = built_func;
        }
        else
        {
            debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n";
        }
    }
} myclock; // unnamed class
    #define build_clock() myclock.build(__LINE__, __func__)
    #define set_clock() myclock.set(__LINE__, __func__)
    #define get_clock() myclock.get(__LINE__, __func__)
#else
    #define build_clock() ((void)0)
    #define set_clock() ((void)0)
    #define get_clock() ((void)0)
#endif

namespace std
{
    // hash
    template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
    template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
    template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
    template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
    template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
    // iostream
    template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
    template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
    template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
    template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
    template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
    template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
    template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
    template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
    template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
    template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std

/* dump definition start */
#ifdef LOCAL
    #define dump(...) debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", dump_func(#__VA_ARGS__, __VA_ARGS__)
    template <class T> void dump_func(const char *ptr, const T &x)
    {
        debug_stream << '\t';
        for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ' && c != '\t') debug_stream << c;
        debug_stream << " : " << x << '\n';
    }
    template <class T, class... rest_t> void dump_func(const char *ptr, const T &x, rest_t... rest)
    {
        debug_stream << '\t';
        for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ' && c != '\t') debug_stream << c;
        debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...);
    }
#else
    #define dump(...) ((void)0)
#endif
/* dump definition end */

/* function utility start */
template <class T, class... types> T read(types... args) noexcept { T obj(args...); std::cin >> obj; return obj; }
#define input(type, var, ...) type var{read<type>(__VA_ARGS__)}
// substitute y for x if x > y.
template <class T> inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitute y for x if x < y.
template <class T> inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search on discrete range.
template <class iter_type, class pred_type>
iter_type binary(iter_type __ok, iter_type __ng, pred_type pred)
{
    std::ptrdiff_t dist(__ng - __ok);
    while(std::abs(dist) > 1)
    {
        iter_type mid(__ok + dist / 2);
        if(pred(mid)) __ok = mid, dist -= dist / 2;
        else __ng = mid, dist /= 2;
    }
    return __ok;
}
// binary search on real numbers.
template <class pred_type>
long double binary(long double __ok, long double __ng, const long double eps, pred_type pred)
{
    while(std::abs(__ok - __ng) > eps)
    {
        long double mid{(__ok + __ng) / 2};
        (pred(mid) ? __ok : __ng) = mid;
    }
    return __ok;
}
// reset all bits.
template <class A> void reset(A &array) { memset(array, 0, sizeof(array)); }
// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }
/* functon utility end */

/* using alias start */
using namespace std;
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using pii = pair<i32, i32>; using pll = pair<i64, i64>;
template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>;
template <class T> using hashset = unordered_set<T>;
template <class Key, class Value> using hashmap = unordered_map<Key, Value>;
/* using alias end */

/* library start */

// #line 2 "Segment_tree.hpp"
// verified at https://judge.yosupo.jp/submission/2903
#ifndef Segment_tree_hpp
#define Segment_tree_hpp

template <class Monoid>
class segment_tree
{
    class unique_queue
    {
        size_t *const que, *qbegin, *qend;
        bool *const inque;
    public:
        unique_queue(size_t n) : que(new size_t[n]), qbegin(que), qend(que), inque(new bool[n]{}) {}
        ~unique_queue() { delete[] que; delete[] inque; }
        void clear() { qbegin = qend = que; }
        bool empty() const { return qbegin == qend; }
        bool push(size_t x)
        {
            if(inque[x]) return false;
            return inque[*qend++ = x] = true;
        }
        size_t pop() { return inque[*qbegin] = false, *qbegin++; }
    }; // class unique_queue

    using value_type = typename Monoid::value_type;
    Monoid *const monoid_ptr, &monoid;
    const size_t orig_n, height, ext_n;
    value_type *const data;
    unique_queue que;

    void recalc(size_t node) { data[node] = monoid(data[node << 1], data[node << 1 | 1]); }

    void rebuild()
    {
        while(!que.empty())
        {
            const size_t f = que.pop(), p = f >> 1;
            if(p && que.push(p)) recalc(p);
        }
        que.clear();
    }

    void left_bound(size_t index, const std::function<bool(const value_type &)> &pred,
                    size_t node, size_t begin, size_t end, value_type &now, size_t &res)
    {
        if(index <= begin || end < res) return;
        if(end <= index)
        {
            const value_type nxt = monoid(data[node], now);
            if(pred(nxt))
            {
                res = begin, now = nxt;
                return;
            }
        }
        if(node < ext_n)
        {
            // search the right child first
            left_bound(index, pred, node << 1 | 1, (begin + end) >> 1, end, now, res);
            left_bound(index, pred, node << 1, begin, (begin + end) >> 1, now, res);
        }
    }

    void right_bound(size_t index, const std::function<bool(const value_type &)> &pred,
                    size_t node, size_t begin, size_t end, value_type &now, size_t &res)
    {
        if(index >= end || begin > res) return;
        if(begin >= index)
        {
            const value_type nxt = monoid(now, data[node]);
            if(pred(nxt))
            {
                res = end, now = nxt;
                return;
            }
        }
        if(node < ext_n)
        {
            // search the left child first
            right_bound(index, pred, node << 1, begin, (begin + end) >> 1, now, res);
            right_bound(index, pred, node << 1 | 1, (begin + end) >> 1, end, now, res);
        }
    }

    segment_tree(size_t n, Monoid *const _monoid_ptr, bool new_ptr)
        : monoid_ptr(new_ptr ? _monoid_ptr : nullptr), monoid(*_monoid_ptr),
            orig_n{n}, height(orig_n > 1 ? 32 - __builtin_clz(orig_n - 1) : 0), ext_n{1u << height},
            data(new value_type[ext_n << 1]), que(ext_n << 1)
    {
        std::fill_n(data, ext_n << 1, monoid.identity());
    }

    segment_tree(size_t n, const value_type &val, Monoid *const _monoid_ptr, bool new_ptr)
        : monoid_ptr(new_ptr ? _monoid_ptr : nullptr), monoid(*_monoid_ptr),
            orig_n{n}, height(orig_n > 1 ? 32 - __builtin_clz(orig_n - 1) : 0), ext_n{1u << height},
            data(new value_type[ext_n << 1]), que(ext_n << 1)
    {
        std::fill_n(data + ext_n, ext_n, val);
        for(size_t i = ext_n - 1; i; --i) recalc(i);
    }

    template <class iter_type>
    segment_tree(iter_type __first, iter_type __last, Monoid *const _monoid_ptr, bool new_ptr)
        : monoid_ptr(new_ptr ? _monoid_ptr : nullptr), monoid(*_monoid_ptr),
            orig_n(std::distance(__first, __last)), height(orig_n > 1 ? 32 - __builtin_clz(orig_n - 1) : 0), ext_n{1u << height},
            data(new value_type[ext_n << 1]), que(ext_n << 1)
    {
        static_assert(std::is_same<typename std::iterator_traits<iter_type>::value_type, value_type>::value, "iterator's value_type should be equal to Monoid's");
        std::fill(std::copy(__first, __last, data + ext_n), data + (ext_n << 1), monoid.identity());
        for(size_t i = ext_n - 1; i; --i) recalc(i);
    }

public:
    explicit segment_tree(size_t n) : segment_tree(n, new Monoid, true) {}
    segment_tree(size_t n, Monoid &_monoid) : segment_tree(n, &_monoid, false) {}

    segment_tree(size_t n, const value_type &val) : segment_tree(n, val, new Monoid, true) {}
    segment_tree(size_t n, const value_type &val, Monoid &_monoid) : segment_tree(n, val, &_monoid, false) {}

    template <class iter_type, class = typename std::iterator_traits<iter_type>::value_type>
    segment_tree(const iter_type __first, const iter_type __last) : segment_tree(__first, __last, new Monoid, true) {}
    template <class iter_type, class = typename std::iterator_traits<iter_type>::value_type>
    segment_tree(const iter_type __first, const iter_type __last, Monoid &_monoid) : segment_tree(__first, __last, &_monoid, false) {}

    ~segment_tree() { delete monoid_ptr; delete[] data; }

    // reference to the element at position i.
    value_type &operator[](size_t i)
    {
        assert(i < orig_n);
        que.push(i |= ext_n);
        return data[i];
    }

    value_type fold(size_t begin, size_t end)
    {
        assert(end <= orig_n), rebuild();
        value_type leftval = monoid.identity(), rightval = monoid.identity();
        begin += ext_n, end += ext_n;
        while(begin < end)
        {
            if(begin & 1) leftval = monoid(leftval, data[begin++]);
            if(end & 1) rightval = monoid(rightval, data[--end]);
            begin >>= 1, end >>= 1;
        }
        return monoid(leftval, rightval);
    }

    // minimum l where range [l, index) meets the condition.
    size_t left_bound(size_t index, const std::function<bool(const value_type &)> &pred)
    {
        assert(index <= orig_n);
        size_t res = index;
        value_type now = monoid.identity();
        left_bound(index, pred, 1, 0, ext_n, now, res);
        return res;
    }

    // maximum r where range [index, r) meets the condition.
    size_t right_bound(size_t index, const std::function<bool(const value_type &)> &pred)
    {
        assert(index < orig_n);
        size_t res = index;
        value_type now = monoid.identity();
        right_bound(index, pred, 1, 0, ext_n, now, res);
        return res < orig_n ? res : orig_n;
    }
}; // class segment_tree

#endif // Segment_tree_hpp

/* library end */

/* The main code follows. */

template <class T>
struct max_monoid
{
    using value_type = T;
    T identity()
    {
        // return std::numeric_limits<T>::min() / 2;
        return 0;
    }
    T operator()(const T &x, const T &y)
    {
        return std::max(x,y);
    }
};

struct solver
{

    solver()
    {
        input(int,n);
        i64 ini=0;
        vector<pll> days(n);
        vector<i64> a(n);
        for(int i=0; i<n; ++i)
        {
            i64 b,c; cin>>a[i]>>b>>c;
            ini+=a[i];
            days[i]={a[i]+c,b};
        }

        const int half=(n+1)/2;
        vector<pll> comb(1<<half);
        for(int i=0; i<1<<half; ++i)
        {
            bool valid=true;
            i64 cost{},score{};
            for(int j=0; j<half; ++j)
            {
                if(i>>j&1)
                {
                    if(!j)
                    {
                        valid=false;
                        break;
                    }
                    else
                    {
                        cost+=days[j].first+a[j-1];
                        score+=days[j].second;
                        if(i>>(j-1)&1)
                        {
                            valid=false;
                            break;
                        }
                    }
                }
            }
            if(valid) comb[i]={cost,score};
        }

        vector<pll> comb2(comb);
        sort(__all(comb2));
        comb.erase(comb.begin()+(1<<half)/2,comb.end());
        sort(__all(comb));

        i64 ans=0;

        segment_tree<max_monoid<i64>> seg(comb.size()),seg2(comb2.size());
        for(size_t i=0; i<comb.size(); ++i)
        {
            seg[i]=comb[i].second;
        }
        for(size_t i=0; i<comb2.size(); ++i)
        {
            seg2[i]=comb2[i].second;
        }

        for(int i=0; i<1<<(n-half); ++i)
        {
            i64 cost{},score{};
            bool valid=true;
            for(int j=0; j+half<n; ++j)
            {
                if(i>>j&1)
                {
                    if(!(j+half))
                    {
                        valid=false;
                        break;
                    }
                    cost+=days[half+j].first+a[half+j-1];
                    score+=days[half+j].second;
                    if(j and i>>(j-1)&1)
                    {
                        valid=false;
                        break;
                    }
                }
            }
            if(!valid) continue;
            if(i&1)
            {
                int k=lower_bound(__all(comb),pll{ini-cost,(i64)1e18})-comb.begin();
                if(k) sbmax(ans,score+seg.fold(0,k));
            }
            else
            {
                int k=lower_bound(__all(comb2),pll{ini-cost,(i64)1e18})-comb2.begin();
                if(k) sbmax(ans,score+seg2.fold(0,k));
            }
        }
        cout << ans << "\n";
    }
}; // struct solver

int main(int argc, char *argv[])
{
    u32 t; // loop count
#ifdef LOCAL
    t = 1;
#else
    t = 1; // single test case
#endif
    // t = -1; // infinite loop
    // cin >> t; // case number given

    while(t--)
    {
        solver();
    }
}
0