結果
問題 |
No.972 選び方のスコア
|
ユーザー |
![]() |
提出日時 | 2020-01-18 09:39:06 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 1,590 ms / 2,000 ms |
コード長 | 1,437 bytes |
コンパイル時間 | 106 ms |
コンパイル使用メモリ | 12,800 KB |
実行使用メモリ | 32,912 KB |
最終ジャッジ日時 | 2024-06-27 01:28:54 |
合計ジャッジ時間 | 36,177 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 32 |
ソースコード
import itertools import sys sys.setrecursionlimit(10 ** 6) int1 = lambda x: int(x) - 1 p2D = lambda x: print(*x, sep="\n") def II(): return int(sys.stdin.readline()) def MI(): return map(int, sys.stdin.readline().split()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def main(): n = II() aa = LI() # 初期配置は答えと無関係なのでソート aa.sort() # 累積和を事前計算 cs = [0] for a in aa: cs.append(cs[-1] + a) # 中央値mをすべて(両端は除く)試す ans = 0 for i, m in enumerate(aa[1:-1], 1): # mの左右から何個ずつ選ぶかを二分探索で決める # 左はmの近くから、右はmの遠くから選ぶのが最適 # k個目を選ぶことで、スコアが増加するかで判断 # つまり(左のk個目)-m+(右のk個目)-m>0となる最大のkを探す l = 0 r = min(i, n - i - 1) + 1 while l + 1 < r: k = (l + r) // 2 if aa[i - k] + aa[n - k] - 2 * m > 0: l = k else: r = k k = l # このときのスコアを計算(左の和+右の和-mが2k個) score = (cs[i] - cs[i - k]) + (cs[n] - cs[n - k]) - 2 * k * m # 最大のスコアが答え if score > ans: ans = score print(ans) main()