結果
| 問題 |
No.526 フィボナッチ数列の第N項をMで割った余りを求める
|
| コンテスト | |
| ユーザー |
syak_18
|
| 提出日時 | 2020-01-22 16:53:13 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 5,799 bytes |
| コンパイル時間 | 1,931 ms |
| コンパイル使用メモリ | 179,984 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-07-08 08:31:36 |
| 合計ジャッジ時間 | 2,117 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 12 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
class ModInt {
using u64 = std::uint_fast64_t;
static u64 &mod() {
static u64 mod_ = 0;
return mod_;
}
public:
u64 x;
ModInt(const ll x = 0) : x(x < 0 ? (mod() - (-x % mod())) % mod() : x % mod()) {}
ModInt operator+(const ModInt r) { return ModInt(*this) += r; }
ModInt operator*(const ModInt r) { return ModInt(*this) *= r; }
ModInt operator-(const ModInt r) { return ModInt(*this) -= r; }
ModInt operator/(const ModInt r) { return ModInt(*this) /= r; }
ModInt operator-() { return ModInt(mod() - x); }
ModInt &operator+=(const ModInt r) {
x += r.x;
if (x >= mod()) x -= mod();
return *this;
}
ModInt &operator-=(const ModInt r) {
if (x < r.x) x += mod();
x -= r.x;
return *this;
}
ModInt &operator*=(const ModInt r) {
x *= r.x;
if (x >= mod()) x %= mod();
return *this;
}
ModInt &operator/=(ModInt r) {
if (!(x % r.x)) {
x /= r.x;
return *this;
}
u64 p = mod() - 2;
while (p > 0) {
if (p & 1) *this *= r;
r *= r;
p >>= 1;
}
return *this;
}
ModInt &operator++(int) { return (*this) += 1; }
ModInt &operator++() { return (*this) += 1; }
ModInt &operator--(int) { return (*this) -= 1; }
ModInt &operator--() { return (*this) -= 1; }
bool operator<(const ModInt r) { return x < r.x; }
bool operator>(const ModInt r) { return x > r.x; }
bool operator<=(const ModInt r) { return x <= r.x; }
bool operator>=(const ModInt r) { return x >= r.x; }
bool operator==(const ModInt r) { return x == r.x; }
bool operator!=(const ModInt r) { return x != r.x; }
ModInt inv() { return (ModInt)1 / (*this); }
int get_mod() { return mod(); }
friend std::istream &operator>>(std::istream &in, ModInt &m) {
ll a;
in >> a;
if (a < 0) a = mod() - (-a % mod());
if (a >= mod()) a %= mod();
m.x = a;
return in;
}
friend std::ostream &operator<<(std::ostream &out, const ModInt &m) {
out << m.x;
return out;
}
static void set_mod(const u64 m) { mod() = m; }
};
using mint = ModInt;
template <typename T>
class Matrix {
vector<vector<T>> mat;
public:
const size_t height, width;
Matrix(size_t height, size_t width, T e = 0) : height(height), width(width) {
mat.assign(height, vector<T>(width, e));
}
Matrix(vector<vector<T>> m) : mat(m), height(m.size()), width(m[0].size()) {}
Matrix operator+(const Matrix r) { return Matrix(*this) += r; }
Matrix operator*(const Matrix r) { return Matrix(*this) *= r; }
Matrix operator-(const Matrix r) { return Matrix(*this) -= r; }
Matrix operator*(const T x) { return Matrix(*this) *= x; }
Matrix operator-() { return Matrix(*this) *= -1; }
Matrix &operator+=(const Matrix a) {
assert(height == a.height && width == a.width);
for (int i = 0; i < height; i++)
for (int j = 0; j < width; j++) mat[i][j] += a[i][j];
return *this;
}
Matrix &operator-=(const Matrix a) {
assert(height == a.height && width == a.width);
for (int i = 0; i < height; i++)
for (int j = 0; j < width; j++) mat[i][j] -= a[i][j];
return *this;
}
Matrix &operator*=(const Matrix a) {
assert(width == a.height);
vector<vector<T>> b(height, vector<T>(a.width, 0));
for (int i = 0; i < height; i++)
for (int j = 0; j < a.width; j++)
for (int k = 0; k < width; k++) b[i][j] += mat[i][k] * a[k][j];
mat.swap(b);
return *this;
}
Matrix &operator*=(const T x) {
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
mat[i][j] *= x;
}
}
}
T det() {
assert(height == width);
Matrix b(*this);
T res = 1;
for (int i = 0; i < width; i++) {
int idx = -1;
for (int j = i; j < width; j++) {
if (b[i][j] != 0) idx = j;
}
if (idx == -1) return 0;
if (i != idx) {
res *= -1;
swap(b[i], b[idx]);
}
res *= b[i][i];
T x = b[i][i];
for (int j = 0; j < width; j++) {
b[i][j] /= x;
}
for (int j = i + 1; j < width; j++) {
T a = b[j][i];
for (int k = 0; k < width; k++) {
b[i][k] -= b[i][k] * a;
}
}
}
return res;
}
vector<T> &operator[](int i) { return mat[i]; }
const vector<T> &operator[](int i) const { return mat[i]; }
friend std::ostream &operator<<(std::ostream &out, const Matrix &a) {
for (int i = 0; i < a.height; i++) {
out << "( ";
for (int j = 0; j < a.width; j++) out << a[i][j] << (j + 1 == a.width ? " )\n" : ",");
}
return out;
}
static Matrix<T> I(size_t n) {
Matrix<T> I(n, n);
for (int i = 0; i < n; i++) I[i][i] = 1;
return I;
}
};
template <typename T, typename U>
T pow(T x, U n, T e = 1) {
T res = e;
while (n > 0) {
if (n & 1) res *= x;
x *= x;
n >>= 1;
}
return res;
}
int main() {
int n, m;
cin >> n >> m;
mint::set_mod(m);
Matrix<mint> A({{0, 1}, {1, 1}});
vector<vector<mint>> v = {{0}, {1}};
Matrix<mint> B(v);
Matrix<mint> I = Matrix<mint>::I(2);
cout << (pow<Matrix<mint>, int>(A, n - 2, I) * B)[1][0] << endl;
return 0;
}
syak_18