結果

問題 No.526 フィボナッチ数列の第N項をMで割った余りを求める
ユーザー syak_18syak_18
提出日時 2020-01-22 16:53:13
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 5,799 bytes
コンパイル時間 1,931 ms
コンパイル使用メモリ 179,984 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-08 08:31:36
合計ジャッジ時間 2,117 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 1 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 1 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 1 ms
6,940 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 1 ms
6,940 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 1 ms
6,944 KB
testcase_12 AC 1 ms
6,944 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 1 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

class ModInt {
    using u64 = std::uint_fast64_t;
    static u64 &mod() {
        static u64 mod_ = 0;
        return mod_;
    }

   public:
    u64 x;
    ModInt(const ll x = 0) : x(x < 0 ? (mod() - (-x % mod())) % mod() : x % mod()) {}

    ModInt operator+(const ModInt r) { return ModInt(*this) += r; }
    ModInt operator*(const ModInt r) { return ModInt(*this) *= r; }
    ModInt operator-(const ModInt r) { return ModInt(*this) -= r; }
    ModInt operator/(const ModInt r) { return ModInt(*this) /= r; }
    ModInt operator-() { return ModInt(mod() - x); }

    ModInt &operator+=(const ModInt r) {
        x += r.x;
        if (x >= mod()) x -= mod();
        return *this;
    }
    ModInt &operator-=(const ModInt r) {
        if (x < r.x) x += mod();
        x -= r.x;
        return *this;
    }
    ModInt &operator*=(const ModInt r) {
        x *= r.x;
        if (x >= mod()) x %= mod();
        return *this;
    }
    ModInt &operator/=(ModInt r) {
        if (!(x % r.x)) {
            x /= r.x;
            return *this;
        }
        u64 p = mod() - 2;
        while (p > 0) {
            if (p & 1) *this *= r;
            r *= r;
            p >>= 1;
        }
        return *this;
    }
    ModInt &operator++(int) { return (*this) += 1; }
    ModInt &operator++() { return (*this) += 1; }
    ModInt &operator--(int) { return (*this) -= 1; }
    ModInt &operator--() { return (*this) -= 1; }

    bool operator<(const ModInt r) { return x < r.x; }
    bool operator>(const ModInt r) { return x > r.x; }
    bool operator<=(const ModInt r) { return x <= r.x; }
    bool operator>=(const ModInt r) { return x >= r.x; }
    bool operator==(const ModInt r) { return x == r.x; }
    bool operator!=(const ModInt r) { return x != r.x; }

    ModInt inv() { return (ModInt)1 / (*this); }
    int get_mod() { return mod(); }

    friend std::istream &operator>>(std::istream &in, ModInt &m) {
        ll a;
        in >> a;
        if (a < 0) a = mod() - (-a % mod());
        if (a >= mod()) a %= mod();
        m.x = a;
        return in;
    }
    friend std::ostream &operator<<(std::ostream &out, const ModInt &m) {
        out << m.x;
        return out;
    }

    static void set_mod(const u64 m) { mod() = m; }
};
using mint = ModInt;

template <typename T>
class Matrix {
    vector<vector<T>> mat;

   public:
    const size_t height, width;
    Matrix(size_t height, size_t width, T e = 0) : height(height), width(width) {
        mat.assign(height, vector<T>(width, e));
    }
    Matrix(vector<vector<T>> m) : mat(m), height(m.size()), width(m[0].size()) {}

    Matrix operator+(const Matrix r) { return Matrix(*this) += r; }
    Matrix operator*(const Matrix r) { return Matrix(*this) *= r; }
    Matrix operator-(const Matrix r) { return Matrix(*this) -= r; }
    Matrix operator*(const T x) { return Matrix(*this) *= x; }
    Matrix operator-() { return Matrix(*this) *= -1; }

    Matrix &operator+=(const Matrix a) {
        assert(height == a.height && width == a.width);
        for (int i = 0; i < height; i++)
            for (int j = 0; j < width; j++) mat[i][j] += a[i][j];

        return *this;
    }
    Matrix &operator-=(const Matrix a) {
        assert(height == a.height && width == a.width);
        for (int i = 0; i < height; i++)
            for (int j = 0; j < width; j++) mat[i][j] -= a[i][j];

        return *this;
    }
    Matrix &operator*=(const Matrix a) {
        assert(width == a.height);
        vector<vector<T>> b(height, vector<T>(a.width, 0));
        for (int i = 0; i < height; i++)
            for (int j = 0; j < a.width; j++)
                for (int k = 0; k < width; k++) b[i][j] += mat[i][k] * a[k][j];
        mat.swap(b);
        return *this;
    }
    Matrix &operator*=(const T x) {
        for (int i = 0; i < height; i++) {
            for (int j = 0; j < width; j++) {
                mat[i][j] *= x;
            }
        }
    }

    T det() {
        assert(height == width);
        Matrix b(*this);
        T res = 1;
        for (int i = 0; i < width; i++) {
            int idx = -1;
            for (int j = i; j < width; j++) {
                if (b[i][j] != 0) idx = j;
            }
            if (idx == -1) return 0;
            if (i != idx) {
                res *= -1;
                swap(b[i], b[idx]);
            }
            res *= b[i][i];
            T x = b[i][i];
            for (int j = 0; j < width; j++) {
                b[i][j] /= x;
            }
            for (int j = i + 1; j < width; j++) {
                T a = b[j][i];
                for (int k = 0; k < width; k++) {
                    b[i][k] -= b[i][k] * a;
                }
            }
        }
        return res;
    }

    vector<T> &operator[](int i) { return mat[i]; }
    const vector<T> &operator[](int i) const { return mat[i]; }
    friend std::ostream &operator<<(std::ostream &out, const Matrix &a) {
        for (int i = 0; i < a.height; i++) {
            out << "( ";
            for (int j = 0; j < a.width; j++) out << a[i][j] << (j + 1 == a.width ? " )\n" : ",");
        }
        return out;
    }
    static Matrix<T> I(size_t n) {
        Matrix<T> I(n, n);
        for (int i = 0; i < n; i++) I[i][i] = 1;
        return I;
    }
};

template <typename T, typename U>
T pow(T x, U n, T e = 1) {
    T res = e;
    while (n > 0) {
        if (n & 1) res *= x;
        x *= x;
        n >>= 1;
    }
    return res;
}

int main() {
    int n, m;
    cin >> n >> m;
    mint::set_mod(m);
    Matrix<mint> A({{0, 1}, {1, 1}});
    vector<vector<mint>> v = {{0}, {1}};
    Matrix<mint> B(v);
    Matrix<mint> I = Matrix<mint>::I(2);
    cout << (pow<Matrix<mint>, int>(A, n - 2, I) * B)[1][0] << endl;
    return 0;
}
0