結果
問題 | No.14 最小公倍数ソート |
ユーザー | te-sh |
提出日時 | 2020-01-24 18:44:49 |
言語 | D (dmd 2.109.1) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,758 bytes |
コンパイル時間 | 2,005 ms |
コンパイル使用メモリ | 182,536 KB |
実行使用メモリ | 11,340 KB |
最終ジャッジ日時 | 2024-06-22 04:26:20 |
合計ジャッジ時間 | 4,130 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,944 KB |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
コンパイルメッセージ
/home/linuxbrew/.linuxbrew/opt/dmd/include/dlang/dmd/std/numeric.d(2999): Warning: cannot inline function `std.numeric.gcdImpl!uint.gcdImpl`
ソースコード
// URL: https://yukicoder.me/problems/no/14 import std.algorithm, std.array, std.container, std.math, std.range, std.typecons, std.string; import std.numeric; version(unittest) {} else void main() { int N; io.getV(N); int[] a; io.getA(N, a); auto ma = a.maxElement; auto primes = Prime(ma.isqrt); auto b = new int[][](ma+1); auto c = (ma+1).iota.map!(_ => redBlackTree!true(cast(int[])[])).array; foreach (ai; a) { auto d = primes.divisors(ai); if (b[ai].empty) b[ai] = d; foreach (di; d) c[di].insert(ai); } auto ai = a[0], r = cast(int[])[]; foreach (i; 0..N-1) { r ~= ai; foreach (di; b[ai]) c[di].removeKey(ai); auto e = c.indexed(b[ai]). map!(ci => ci.empty ? -1 : ci.front). filter!"a>0". minElement!(ei => lcm(ai, ei)); ai = e; } io.put(r, ai); } pure T lcm(T)(T a, T b) { return a/gcd(a, b)*b; } pure T isqrt(T)(T n) { static if (is(T == int)) auto max = 46341; else static if (is(T == long)) auto max = 3037000500L; auto bs = iota(T(0), max).map!(x => tuple(x, x^^2)).assumeSorted!"a[1]<=b[1]"; return bs.lowerBound(tuple(0, n)).back[0]; } pure T icbrt(T)(T n) { static if (is(T == int)) auto max = 1291; else static if (is(T == long)) auto max = 2097152L; auto bs = iota(T(0), max).map!(x => tuple(x, x^^3)).assumeSorted!"a[1]<=b[1]"; return bs.lowerBound(tuple(0, n)).back[0]; } pure T powr(alias pred = "a*b", T, U)(T a, U n, T one) { import std.functional; alias predFun = binaryFun!pred; if (n == 0) return one; auto r = one; for (; n > 0; n >>= 1) { if (n&1) r = predFun(r, a); a = predFun(a, a); } return r; } pure T powr(alias pred = "a*b", T, U)(T a, U n) { return powr!(pred, T, U)(a, n, T(1)); } pure T extGcd(T)(T a, T b, out T x, out T y) { auto g = a; x = 1; y = 0; if (b) { g = extGcd(b, a%b, y, x); y -= a/b*x; } return g; } struct Prime { import std.bitmanip; struct Factor { int prime, exp; } const int n; @property array() { return primes; } alias array this; this(int n) { this.n = n; auto sieve = BitArray(); sieve.length((n+1)/2); sieve = ~sieve; foreach (p; 1..(n.isqrt-1)/2+1) if (sieve[p]) for (auto q = p*3+1; q < (n+1)/2; q += p*2+1) sieve[q] = false; primes = sieve.bitsSet.map!(p => cast(int)p*2+1).array; primes[0] = 2; } pure Factor[] div(int x) in { assert(x > 0 && x.isqrt <= n); } do { Factor[] factors; auto t = isqrt(x); foreach (p; primes) { if (p > t) break; auto c = 0; for (; x%p == 0; x /= p) ++c; if (c > 0) factors ~= Factor(p, c); if (x == 1) break; } if (x > 1) factors ~= [Factor(x, 1)]; return factors; } pure int[] divisors(int x) in { assert(x > 0 && x.isqrt <= n); } do { auto factors = div(x); auto r = divisorsProc(factors, 0, 1); r.sort(); return r; } private { int[] primes; pure int[] divisorsProc(Factor[] factors, int i, int c) { if (i == factors.length) return [c]; int[] r; foreach (j; 0..factors[i].exp+1) r ~= divisorsProc(factors, i+1, c*factors[i].prime^^j); return r; } } } auto io = IO!()(); import std.stdio; struct IO(string floatFormat = "%.10f", string delimiter = " ", alias IN = stdin, alias OUT = stdout) { import std.conv, std.format, std.meta, std.traits; alias assignable = hasAssignableElements; auto getV(T...)(ref T v) { foreach (ref w; v) get(w); } auto getA(T)(size_t n, ref T v) if (assignable!T) { v = new T(n); foreach (ref w; v) get(w); } auto getC(T...)(size_t n, ref T v) if (allSatisfy!(assignable, T)) { foreach (ref w; v) w = new typeof(w)(n); foreach (i; 0..n) foreach (ref w; v) get(w[i]); } auto getM(T)(size_t r, size_t c, ref T v) if (assignable!T && assignable!(ElementType!T)) { v = new T(r); foreach (ref w; v) getA(c, w); } auto put(bool flush = false, T...)(T v) { foreach (i, w; v) { putA(w); if (i < v.length-1) OUT.write(delimiter); } OUT.writeln; static if (flush) OUT.flush(); } auto putB(S, T)(bool c, S t, T f) { if (c) put(t); else put(f); } auto putRaw(T...)(T v) { OUT.write(v); OUT.writeln; } private { dchar[] buf; auto sp = (new dchar[](0)).splitter; void nextLine() { IN.readln(buf); sp = buf.splitter; } auto get(T)(ref T v) { if (sp.empty) nextLine(); v = sp.front.to!T; sp.popFront(); } auto putR(T)(T v) { auto w = v; while (!w.empty) { putA(w.front); w.popFront(); if (!w.empty) OUT.write(delimiter); } } auto putA(T)(T v) { static if (isInputRange!T && !isSomeString!T) putR(v); else if (isFloatingPoint!T) OUT.write(format(floatFormat, v)); else OUT.write(v); } } }